
COS 511: Theoretical Machine Learning

Homework #5 Due:
Boosting & SVM’s April 2, 2018

Problem 1

[10] Suppose, in the usual boosting set-up, that the weak learning condition is guaranteed
to hold so that εt ≤ 1

2 − γ for some γ > 0 which is not known before boosting begins. And
suppose AdaBoost is run in the usual fashion, except that the algorithm is modified to halt
and output the combined classifier H immediately following the first round on which it is
consistent with all of the training examples (so that its training error is zero). Assume
that the weak hypotheses are selected from a class of VC-dimension d. Prove that, with
probability at least 1− δ, the generalization error of the output combined classifier H is at
most

Õ

(
(d/γ2) + ln(1/δ)

m

)
.

Give a bound in which all constants and log terms have been filled in explicitly.

Problem 2

Suppose AdaBoost is run for an unterminating number of rounds. In addition to our usual
notation, we define for each T ≥ 1:

FT (x) =
T∑
t=1

αtht(x) and sT =
T∑
t=1

αt.

Recall that each αt ≥ 0 (since εt ≤ 1
2). The minimum margin on round t, denoted θt, is the

smallest margin of any training example; thus,

θt = min
i

yiFt(xi)

st
.

Finally, we define the smooth margin on round t to be

gt =
− ln

(
1
m

∑m
i=1 e

−yiFt(xi)
)

st
.

a. [10] Prove that

θt ≤ gt ≤ θt +
lnm

st
.

Thus, if st gets large, then gt gets very close to θt.

b. [10] Let us define the continuous function

Υ(γ) =
− ln(1− 4γ2)

ln
(
1+2γ
1−2γ

) .

It is a fact (which you do not need to prove) that γ ≤ Υ(γ) ≤ 2γ for 0 ≤ γ ≤ 1
2 .

Prove that gT is a weighted average of the values Υ(γt), specifically,

gT =

∑T
t=1 αtΥ(γt)

sT
.

c. [10] Prove that if the edges γt converge (as t→∞) to some value γ, where 0 < γ < 1
2 ,

then the minimum margins θt converge to Υ(γ).



Problem 3

a. [10] In class, we argued that if a function L satisfies the “minmax property”

min
w

max
α

L(w,α) = max
α

min
w

L(w,α), (1)

and if (w∗,α∗) are the desired solutions

w∗ = arg min
w

max
α

L(w,α) (2)

α∗ = arg max
α

min
w

L(w,α), (3)

then (w∗,α∗) is a saddle point:

L(w∗,α∗) = max
α

L(w∗,α) = min
w

L(w,α∗). (4)

(Here, it is understood that w and α may belong to a restricted space (e.g., α ≥ 0)
which we omit for brevity.)

Prove the converse of what was shown in class. That is, prove that if (w∗,α∗) satisfies
Eq. (4), then Eqs. (1), (2) and (3) are also satisfied. You should not assume anything
special about L (such as convexity), but you can assume all of the relevant minima
and maxima exist.

b. [10] Let a1, . . . , an be nonnegative real numbers, not all equal to zero, and let b1, . . . , bn
and c all be positive real numbers. Use the method of Lagrange multipliers to find
the values of x1, . . . , xn which minimize

−
n∑
i=1

ai lnxi

subject to the constraint that
n∑
i=1

bixi ≤ c.

Show how this implies that relative entropy is nonnegative.
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Problem 4 – Optional (Extra Credit)

[15] In class (as well as on Problem 1 of this homework), we showed how a weak learning
algorithm that uses hypotheses from a space H of bounded VC-dimension can be converted
into a strong learning algorithm. However, strictly speaking, the definition of weak learn-
ability does not include such a restriction on the weak hypothesis space. The purpose of
this problem is to show that weak and strong learnability are equivalent, even without these
restrictions.

Let C be a concept class on domain X. Let A0 be a weak learning algorithm and let
γ > 0 be a (known) constant such that for every concept c ∈ C and for every distribution
D on X, when given m0 random examples xi from D, each with its label c(xi), A0 outputs
a hypothesis h such that, with probability at least 1/2,

Prx∈D [h(x) 6= c(x)] ≤ 1

2
− γ.

Here, for simplicity, we have “hard-wired” the usual parameter δ to the constant 1/2 so
that A0 takes a fixed number of examples and only needs to succeed with fixed probability
1/2. Note that no restrictions are made on the form of hypothesis h used by A0, nor on the
cardinality or VC-dimension of the space from which it is chosen. For this problem, assume
that A0 is a deterministic algorithm.

Show that A0 can be converted into a strong learning algorithm using boosting. That
is, construct an algorithm A such that, for ε > 0, δ > 0, for every concept c ∈ C and for
every distribution D on X, when given m = poly(m0, 1/ε, 1/δ, 1/γ) random examples xi
from D, each with its label c(xi), A outputs a hypothesis H such that, with probability at
least 1− δ,

Prx∈D [H(x) 6= c(x)] ≤ ε.

Be sure to show that the number of examples needed by this algorithm is polynomial in
m0, 1/ε, 1/δ and 1/γ.
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