Problem 1

[10] As on Problem 1 on Homework #1, let \(X = \mathbb{R} \), and let \(C_s \) be the class of concepts defined by unions of \(s \) intervals. Compute the VC-dimension of \(C_s \) exactly.

Problem 2

[15] For \(i = 1, \ldots, n \), let \(\mathcal{G}_i \) be a space of concepts (\(\{0,1\} \)-valued functions) defined on some domain \(X \), and let \(\mathcal{F} \) be a space of concepts defined on \(\{0,1\}^n \). (That is, each \(g_i \in \mathcal{G}_i \) maps \(X \) to \(\{0,1\} \), and each \(f \in \mathcal{F} \) maps \(\{0,1\}^n \) to \(\{0,1\} \).) Let \(\mathcal{H} \) be the space of all concepts \(h : X \to \{0,1\} \) of the form

\[
h(x) = f(g_1(x), \ldots, g_n(x))
\]

for some \(f \in \mathcal{F} \), \(g_1 \in \mathcal{G}_1, \ldots, g_n \in \mathcal{G}_n \).

Give a careful argument proving that

\[
\Pi_{\mathcal{H}}(m) \leq \Pi_{\mathcal{F}}(m) \cdot \prod_{i=1}^{n} \Pi_{\mathcal{G}_i}(m).
\]

[An optional continuation of this problem, applicable to feedforward networks, is given in Problem 5.]

Problem 3

[15] Show that Sauer’s Lemma is tight. That is, for each \(d = 0, 1, 2, \ldots \), give an example of a class \(\mathcal{C} \) with VC-dimension equal to \(d \) such that for each \(m \),

\[
\Pi_{\mathcal{C}}(m) = \sum_{i=0}^{d} \binom{m}{i}.
\]

Problem 4

This problem explores another general method for bounding the error when the hypothesis space is infinite.

Some algorithms output hypotheses that can be represented by a small number of examples from the training set. For instance, suppose the domain is \(\mathbb{R} \) and we are learning a half-line of the form \(x \geq a \) where \(a \) defines the half-line. A simple algorithm chooses the leftmost positive training example \(a \) and outputs the corresponding half-line, which is clearly consistent with the data. Thus, in this case, the hypothesis can be represented by a single training example.

More formally, let \(F \) be a function mapping labeled examples to concepts, and assume that algorithm \(A \), when given training examples \((x_1, c(x_1)), \ldots, (x_m, c(x_m)) \) labeled by some unknown \(c \in \mathcal{C} \), chooses some \(i_1, \ldots, i_k \in \{1, \ldots, m\} \) and outputs the consistent hypothesis \(h = F((x_{i_1}, c(x_{i_1})), \ldots, (x_{i_k}, c(x_{i_k}))) \). In a sense, the algorithm has “compressed” the sample down to a sequence of just \(k \) of the \(m \) training examples. (We assume throughout that \(m > k \).)
a. [5] Give such an algorithm for axis-aligned hyper-rectangles in \mathbb{R}^n with $k = O(n)$. (An axis-aligned hyper-rectangle is a set of the form $[a_1, b_1] \times \cdots \times [a_n, b_n]$, and the corresponding concept, as usual, is the binary function that is 1 for points inside the rectangle and 0 otherwise. For $n = 2$, this is the class of rectangles used repeatedly as an example in class.) Your algorithm should run in time polynomial in m and n.

b. [15] Returning to the general case, assume as usual that the examples are chosen at random from some distribution D. Also assume that the size k is fixed. Argue carefully that the error of the output hypothesis h, with probability at least $1 - \delta$, satisfies the bound:

$$\text{err}_D(h) \leq O\left(\frac{\ln(1/\delta) + k \ln m}{m - k}\right).$$

[Side note: A difficult, long-standing open problem asks if it is always possible to find such a “compression scheme” whose size k is equal to (or proportional to) the VC-dimension d of the target class C.]

Problem 5 – Optional (Extra Credit)

[15] This problem shows one way in which the methods we have been developing can be applied to feedforward networks, including (some) neural networks.

A feedforward network, as in the example above, is defined by a directed acyclic graph on a set of input nodes x_1, \ldots, x_n, and computation nodes u_1, \ldots, u_N. The input nodes have no incoming edges. One of the computation nodes is called the output node, and has no outgoing edges. Each computation node u_k is associated with a function $f_k : \mathbb{R}^{n_k} \to \{0, 1\}$, where n_k is u_k’s indegree (number of ingoing edges). On input $x \in \mathbb{R}^n$, the network computes its output $g(x)$ in a natural, feedforward fashion. For instance, given input $x = \langle x_1, x_2, x_3 \rangle$, the network above computes $g(x)$ as follows:

$$
\begin{align*}
 u_1 &= f_1(x_1, x_2, x_3) \\
 u_2 &= f_2(x_2, x_3) \\
 u_3 &= f_3(u_1, x_2, u_2) \\
 u_4 &= f_4(u_1, u_3) \\
 g(x) &= u_4.
\end{align*}
$$

(Here, we slightly abuse notation, writing x_j and u_k both for nodes of the network, and for the input/computed values associated with these nodes.) The number of edges in the graph is denoted W.

In what follows, we regard the underlying graph as fixed, but allow the functions f_k to vary, or to be learned from data. In particular, let $\mathcal{F}_1, \ldots, \mathcal{F}_N$ be spaces of functions. As just explained, every choice of functions f_1, \ldots, f_N induces an overall function $g : \mathbb{R}^n \to \{0, 1\}$ for the network. We let \mathcal{G} denote the space of all such functions when f_k is chosen from \mathcal{F}_k for $k = 1, \ldots, N$.

2
a. Prove that
\[\Pi_G(m) \leq \prod_{k=1}^{N} \Pi_{F_k}(m). \]
(Note that this is a generalization of Problem 2.)

b. Let \(d_k \) be the VC-dimension of \(F_k \), and let \(d = \sum_{k=1}^{N} d_k \). Assume \(m \geq d_k \geq 1 \) for all \(k \). Prove that
\[\Pi_G(m) \leq \left(\frac{emN}{d} \right)^d. \]

c. Consider the typical case in which the functions \(f_k \) are linear threshold functions; as we know, this class of functions has VC-dimension \(d_k = n_k + 1 \). Give an exact expression for \(d \) in terms of \(N, n, \) and \(W \). Conclude by deriving a “big-Oh” upper bound on the generalization error of any \(g \in G \) that is consistent with \(m \) random examples, assuming \(m \geq d \). Your bound should hold with probability at least \(1 - \delta \), and should be expressed in terms of \(N, n, W, m, \) and \(\delta \).