
Contents
(75pts) COS495 Midterm 1

(15pts) Short answers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
(5pts) Unequal loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
(15pts) About LSTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
(25pts) Modular implementation of neural networks . . . . . . . . . . 4
(15pts) Design an RNN . . . . . . . . . . . . . . . . . . . . . . . . . . 8

(75pts) COS495 Midterm

Your name:

(15pts) Short answers

(2pts) What is the object being embedded (i.e. a vector representing this object
is computed) when one uses

• the pair-pattern matrix?
• the word-context matrix?

(2pts) Bigrams are consecutive tokens. Let x1 = dog bites man more and
x2 = man bites dog less. Write down the dense bigram indicator feature
vectors for this dataset, label the dimensions.

(3pts) When faced with a big softmax over the vocabulary, training can be
slow. Describe and explain the hierarchical softmax for speeding up training
used in word2vec. Identify its parameters and explain the savings.

1



GloVe has objective
∑

ij f(Xij)(wi · w̃j + bi + b̃j − log Xij)2

• (2pt) What do the indices i, j represent and what is Xij?

• (3pt) What is an issue with the alternative objective
∑

ij(wi · w̃j + bi +
b̃j − log Xij)2?

(3pts) Let z = Wa, W ∈ Rm×n,and consider the backward pass. Suppose we
have i.i.d samples dL

dzi
∼ N(0, 1) and Wij ∼ N(0, σ2). We would like Var[ dL

dai
] = 1

by setting σ appropriately. Compute σ and show your steps.

(5pts) Unequal loss

Not all mistakes are created equal. We define cost(y, y′) as the cost when the
label is y and the prediction is y′. Then the hinge loss is

max(0, max
y′

cost(y, y′) + sy′ − sy).

• (3pts) Show that this hinge loss is an upperbound of cost(y, y′).
• (2pts) Give the necessary condition on si for this upperbound to be tight

and an example when it is loose.

2



(15pts) About LSTMs

Here are the LSTM equations and the corresponding illustration

ft = σ(Wf [ht−1, xt] + bf )
it = σ(Wi[ht−1, xt] + bi)
ot = σ(Wo[ht−1, xt] + bo)
c̃t = tanh(Wc[ht−1, xt] + bc)
ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

(illustration from Chris Olah)

• (5pt) Label each of ft, it, ot, ct, c̃t, ct−1 on the illustration. Make sure
there is no ambiguity in your labeling.

Suppose we have a one-layer LSTM primitive [h1, . . . , hT ] = LSTM([x1, . . . , xT ]) ∈
Rh×T .

• (2pts) Represent a two-layer LSTM using LSTM

3



• (3pts) Represent a bidirectional LSTM and use its hidden states to per-
form a sequence tagging task, where the tag at each timestep depends only
on forward and backward hidden states at that time step. Clearly define
your operations.

LSTM is supposed to alleviate the vanishing and exploding gradient problem.
Let us consider a loss function that only depends on the final step L(cT ) where
T is the final step.

• (5pts) Express dL
dct

in terms of dL
dct+1

, dL
dht

, and non-recursive terms.

• (5pts) By analyzing your expression for dL
dc1

, explain why the long term
dependency does not vanish when the forget gate is ft = 1.

(25pts) Modular implementation of neural networks

Modules makes it easy to construct neural networks with various structures.
Each module supports the forward and backward functions, might maintain
internal state, and might be be composed of other modules. Linear and
Sequential are two examples.

4



class Linear(Module):
def __init__(self, W, b):

self.W, self.b = W, b

def forward(self, input):
return np.dot(self.W, input) + self.b

def backward(self, gradout):
return np.dot(self.W.T, gradout)

class Sequential(Module):
def __init__(self, children):

self.children = children

def forward(self, input):
for child in self.children:

input = child.forward(input)
return input

def backward(self, gradout):
for child in reversed(self.children):

gradout = child.backward(gradout)
return gradout

(3pt) While Linear is computing the right outputs, it is missing a step that
would enable learning in Linear itself. What step is missing? What else needs
to be stored in order to perform this step?

(5pt) Implement the Sigmoid module which computes the element-wise func-
tion σ(x) = 1

1+exp(−x)
(5pt) Implement the Dropout module (space below)

5



# pseudo code or python code are both acceptable
# clarity and precision is required, being able to run is not required
class Sigmoid(Module):

def forward(self, input):

def backward(self, gradout):

#

class Dropout(Module):
def __init__(self, p):
self.p = p # with prob. p, the input stays

def forward(self, input):

def backward(self, gradout):

6



#

(7pt) Implement EMul that takes some children modules, give all children the
same inputs, and outputs the elementwise product of the outputs of all children.

class EMul(Module):
def __init__(self, children):

self.children = children

def forward(self, input):

def backward(self, gradout):

#

(5pt) Use existing modules to implement the following network function by
writing a single statement invoking constructors of Sequential, EMul, Sigmoid,
and Linear given weights W1, W2, W3

a1 = σ(W1x)
a2 = σ(W2x)
z = a1 ⊙ a2

y = W3z

7



(15pts) Design an RNN

We would like an RNN to recognize a string of well-balanced parenthesis. Well
balanced parenthesis are strings such as (()) or (())() where

• the number of ( is the same as the number of ) in the whole string
• any prefix string does not contain more ) than (.

Let x = x1, x2, . . . , xT where xi ∈ R2×1 with [0, 1] for ) and [1, 0] for (.
This RNN should perform the following updates

hi+1 = relu(Whi + Uxi+1)

In addition, we start with h0 (dimension 3 with 0 initial value is recommended,
but you are free to use anything you like). At the end, a prediction y = V hT is
made, where y <= 0 means balanced and y > 0 otherwise.

• (7pts) Clearly state your strategy for the RNN
• (8pts) Specify explicit values of W, U, V to achieve it

8


	(75pts) COS495 Midterm
	(15pts) Short answers
	(5pts) Unequal loss
	(15pts) About LSTMs
	(25pts) Modular implementation of neural networks
	(15pts) Design an RNN


