
Contents
(75pts) COS495 Midterm 1

(15pts) Short answers . 1
(5pts) Unequal loss . 2
(15pts) About LSTMs . 3
(25pts) Modular implementation of neural networks 4
(15pts) Design an RNN . 6

(75pts) COS495 Midterm

Your name:

(15pts) Short answers

(2pts) What is the object being embedded (i.e. a vector representing this object
is computed) when one uses

• the pair-pattern matrix? pairs of words/the semantic relations
between them

• the word-context matrix? words

(2pts) Bigrams are consecutive tokens. Let x1 = ‘dog bites man more‘ and
x2 = ‘man bites dog less‘. Write down the dense bigram indicator feature
vectors for this dataset, label the dimensions.

(dog,bites) (bites,man) (man,more) (man,bites) (bites,dog) (dog,less)
x1 1 1 1 0 0 0
x2 0 0 0 1 1 1

(3pts) When faced with a big softmax over the vocabulary, training can be
slow. Describe and explain the hierarchical softmax for speeding up training
used in word2vec. Identify its parameters and explain the savings.

For a given word w′ and vector v we wish to approximate the softmax
P(w|v) = vT

wv∑
w′ vT

w′ v
without computing a sum over V inner products in the

denominator (which has complexity O(V)), where V is the number of words
in the vocabulary. Instead we construct a Huffman tree of depth log V with
one word (and its associated embedding) assigned to each leaf node and a
parameter vector at all other nodes. The probability is then approximated as

1

P(w|v) ≈
∏

n∈P (w)

1
1 + exp ((−1)Lw,nvT

n v)

where P (w) is the path from the root node to w and Lw,n is 1 if w is n or a
descendant of the left child of n and -1 otherwise. This can be computed in
O(log V) time.

GloVe has objective
∑

ij f(Xij)(wi · w̃j + bi + b̃j − log Xij)2

• (2pt) What do the indices i, j represent and what is Xij?
i and j represent words and Xij represents the number of times they
co-occur within a fixed-size window.

• (3pt) What is an issue with the alternative objective
∑

ij(wi · w̃j + bi +
b̃j − log Xij)2?

• since the sum is taken over all word pairs, this expression is infi-
nite/undefined if there exist pairs of words that never co-occur (which is
usually the case).

• this objectives gives equal weight to words that co-occur rarely as words
that co-occur frequently, even though the confidence we have in the latter
is much higher.

(3pts) Let z = Wa, W ∈ Rm×n, and consider the backward pass. Suppose we
have i.i.d samples dL

dzi
∼ N(0, 1) and Wij ∼ N(0, σ2). We would like Var[dL

dai
] = 1

by setting σ appropriately. Compute σ and show your steps.

dL

dai
= W T

i ∇zL =
∑

j

Wji
dL

zj

Setting the desired variance to 1 and using the fact that the variance of a
product is the product of variances (for mean-zero i.r.v.) we have

1 = Var
[

dL

dai

]
=

∑
j

Var[Wji] Var
[

dL

dzi

]
= mσ2 =⇒ σ = 1√

m

(5pts) Unequal loss

Not all mistakes are created equal. We define cost(y, y′) as the cost when the
label is y and the prediction is y′. Then the hinge loss is

2

max(0, max
y′

cost(y, y′) + sy′ − sy).

* (3pts) Show that this hinge loss is an upperbound of cost(y, y′).
y′ being the prediction means that y′ = arg maxỹ sỹ, and in particular sy′ ≥ sy.
Then,

max
ỹ

cost(y, ỹ) + sỹ − sy ≥ cost(y, y′) + sy′ − sy ≥ cost(y, y′).

Noting max(0, x) ≥ x gives the result.

* (2pts) Give the necessary condition on si for this upperbound to be tight and
an example when it is loose.
For the bound to be tight means the prediction has the same score as the target
sy′ = sy, and everything else clears the margin, for all ỹ, cost(y, ỹ) + sỹ ≤
cost(y, y′) + sy

This bound is loose whenever there is a clear wrong prediction, sy′ > sy,
or if there is ŷ for which cost(y, ŷ) + sŷ > cost(y, y′) + sy.

(15pts) About LSTMs

Here are the LSTM equations and the corresponding illustration

ft = σ(Wf [ht−1, xt] + bf)
it = σ(Wi[ht−1, xt] + b_i)
ot = σ(Wo[ht−1, xt] + bo)
c̃t = tanh(Wc[ht−1, xt] + bc)
ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

LSTM-Chain
LSTM-Notation
(illustration from Chris Olah)

• (5pt) Label each of ft, it, ot, ct, c̃t, ct−1 on the illustration. Make sure
there is no ambiguity in your labeling.

Suppose we have a one-layer LSTM primitive [h1, . . . , hT] = LSTM([x1, . . . , xT]) ∈
Rh×T .

• (2pts) Represent a two-layer LSTM using LSTM
[h1, . . . , hT] = LSTM(LSTM([x1, . . . , xT]))

3

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM2-notation.png

• (3pts) Represent a bidirectional LSTM and use its hidden states to
perform a sequence tagging task, where the tag at each timestep depends
only on forward and backward hidden states at that time step. Clearly
define your operations.
A BiLSTM can be expressed as [h1, . . . , hT] = Concat (LSTM([x1, . . . , xT]), LSTM([xT , . . . , x1]))

where Concat([a1, . . . , aT], [b1, . . . , bT]) =
[(

a1
b1

)
, . . . ,

(
aT

bT

)]
. We can

then train sequence tagging via a softmax loss: L([x1, . . . , xT], yt) =
wT

yt
ht − log

∑
y exp wT

y ht.

LSTM is supposed to alleviate the vanishing and exploding gradient problem.
Let us consider a loss function that only depends on the final step L(cT) where
T is the final step.

• (5pts) Express dL
dct

in terms of dL
dct+1

, dL
dht

, and non-recursive terms.

dL

dct
= dL

dct+1

dct+1

dct
+ dL

dht

dht

dct

= dL

dct+1
⊙ ft + dL

dht
⊙ ot ⊙ tanh′(ct)

• (5pts) By analyzing your expression for dL
dc1

, explain why the long term
dependency does not vanish when the forget gate is ft = 1.
Assuming the forget gate is 1, dL

c1
= dL

cT
+ . . . so rather than vanishing, the

gradient due to the initial state is around the same magnitude as that due
to the final state, so the long-term dependency will be reflected in the loss
function.

(25pts) Modular implementation of neural networks

Modules makes it easy to construct neural networks with various structures.
Each module supports the forward and backward functions, might maintain
internal state, and might be be composed of other modules. Linear and
Sequential are two examples.

class Linear(Module):
def __init__(self, W, b):

self.W, self.b = W, b

def forward(self, input):
return np.dot(self.W, input) + self.b

def backward(self, gradout):

4

return np.dot(self.W.T, gradout)

class Sequential(Module):
def __init__(self, children):

self.children = children

def forward(self, input):
for child in self.children:

input = child.forward(input)
return input

def backward(self, gradout):
for child in reversed(self.children):

gradout = child.backward(gradout)
return gradout

(3pt) While Linear is computing the right outputs, it is missing a step that
would enable learning in Linear itself. What step is missing? What else needs
to be stored in order to perform this step?
A step to compute and store the gradients needed for its own parameter updates
is missing in backward.

(5pt) Implement the Sigmoid module which computes the element-wise func-
tion σ(x) = 1

1+exp(−x)

pseudo code or python code are both acceptable
clarity and precision is required, being able to run is not required
class Sigmoid(Module):

def forward(self, input):
self.output = 1.0 / (1.0+np.exp(-input))
return self.output

def backward(self, gradout):
return self.output * (1.0-self.output) * gradout

(5pt) Implement the Dropout module (space below)

class Dropout(Module):
def __init__(self, p):
self.p = p # with prob. p, the input stays

def forward(self, input):
self.keep = (np.random.rand(*input.shape) < self.p).astype(input.dtype)
return self.keep * input

def backward(self, gradout):
return self.keep * gradout

(7pt) Implement EMul that takes some children modules, give all children the

5

same inputs, and outputs the elementwise product of the outputs of all children.

class EMul(Module):
def __init__(self, children):

self.children = children

def forward(self, input):
self.factors = [child.forward(input) for child in self.children]
self.output = np.copy(self.factors[0])
for factor in self.factors[1:]:

self.output *= factor
return self.output

def backward(self, gradout):
return self.output * sum(child.backward(gradout)/factor for child, factor in zip(self.children, self.factors))

(5pt) Use existing modules to implement the following network function by
writing a single statement invoking constructors of Sequential, EMul, Sigmoid,
and Linear given weights W1, W2, W3

a1 = σ(W1x)
a2 = σ(W2x)
z = a1 ⊙ a2

y = W3z

Network = Sequential(EMul(Sequential(Linear(W1, 0.0), Sigmoid()),
Sequential(Linear(W2, 0.0), Sigmoid())), Linear(W3, 0.0))

(15pts) Design an RNN

We would like an RNN to recognize a string of well-balanced parenthesis. Well
balanced parenthesis are strings such as (()) or (())() where

• the number of (is the same as the number of) in the whole string
• any prefix string does not contain more) than (.

Let x = x1, x2, . . . , xT where xi ∈ R2×1 with [0, 1] for) and [1, 0] for (.
This RNN should perform the following updates

hi+1 = relu(Whi + Uxi+1)

In addition, we start with h0 (dimension 3 with 0 initial value is recommended,
but you are free to use anything you like). At the end, a prediction y = V hT is
made, where y ≤ 0 means balanced and y > 0 otherwise.

6

• (7pts) Clearly state your strategy for the RNN
Store the number of times each character has been seen in first two dimen-
sions. At each step compute the difference between the two and store in
the last two dimensions (#(-#) and #)-#(). Make the fifth dimension
positive whether or not a prefix string has ever had more) than ((i.e.
whether the fourth dimension has ever been positive). Then if any of the
last three dimensions of hT are positive the string is not well-balanced.

• (8pts) Specify explicit values of W, U, V to achieve it

h0 =

0
0
0
0
0

 , W =

1 0 0 0 0
0 1 0 0 0
1 −1 0 0 0

−1 1 0 0 0
0 0 0 1 0

 , U =

1 0
0 1
1 −1

−1 1
0 0

 , V =
(
0 0 1 1 1

)

• Solution with 3 states

• 3-state solution

h0 =

0
0
0

 , W =

1 0 0
0 1 0
1 −1 B

 , U =

1 0
0 1
1 −1

 , V =
(
1 −1 B

)
h3 stores if the sequence has failed for having too many), which will
remain positive once it got to be positive B (B needs to be big enough e.g.
B=2). If sequence did not fail for too many)s, V hT > 0 when there are
more (than).

7

	(75pts) COS495 Midterm
	(15pts) Short answers
	(5pts) Unequal loss
	(15pts) About LSTMs
	(25pts) Modular implementation of neural networks
	(15pts) Design an RNN

