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Precept Objectives
• Review how to train and evaluate machine learning 

algorithms in practice. 

• Make sure everyone knows the basic jargon. 

• Develop basic tools that you will use when 
implementing and evaluating your final projects.



Terminology Review
Supervised Learning:
• Given a set of (example, label) pairs, learning how to 

predict the label of a given example.  
• Examples: classification, regression. 
Unsupervised Learning:
• Given a set of examples, learning useful properties of the 

distribution of these examples.  
• Examples: word embeddings, text generation. 
Other (e.g. Reinforcement, Online) Learning:
• Often involves an adaptive setting with a changing 

environment. Gaining some interest in NLP.



Example Problem: 
Document Classification

Given 50K (movie review, rating) pairs split into a 
training set (25K) and test set (25K), learn a function  

For simplicity, represent each review as a Bag-of-
Words (BoW) vector and each label as +1 or -1:

f : reviews 7! {positive, negative}

Xtrain: 25K V -dimensional vectors x1, . . . , x25K.

Ytrain: 25K numbers y1, . . . , y25K 2 {±1}.



Approach: Linear SVM
• We will use a linear classifier:  

• We will target a low hinge loss on the test set:
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Regularization
• If the vocabulary size is larger than the number of 

training samples then there is an infinite number of 
linear classifier that will perfectly separate the data. 
This makes the problem ill-posed. 

• We want to pick one that generalizes well, so we 
use regularization to encourage a ‘less-complex’ 
classification function: 
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Regularization



Cross-Validation
Validation: 
• To determine C, we hold out some (say 5K examples) 

of our training data in order to use it as a temporary test 
set (also called ‘dev set’) to test different values of C. 

Cross-Validation:
• Split data into k dev sets (‘folds’) and determine C by 

holding out each of them one a time and averaging the 
result. 

Parameters are often picked from powers of 10 (e.g. pick 
the best-performing C out of 10-2, … , 102)



Evaluation Metrics: 
Accuracy

• Although we target a low convex loss, in the end 
we care about correct labeling alone. Thus for 
results we report the average accuracy:
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Evaluation Metrics:  
Precision/Recall/F1

Sometimes, average accuracy is a poor measure of 
performance. For example, say we want to detect 
sarcastic comments, which do not occur very often, 
and learn a system that marks them as positive.

precision =

# True Positives

# True Positives + # False Positives

recall =

# True Positives

# True Positives + # False Negatives

F1 =

2 · precision · recall
precision + recall



Precision v.s. Recall



Example Problem: 
Document Similarity

Given a set of (sentence-1, sentence-2, score) triples 
split into a training set (5K) and a test set (1K), learn 
a function:

f : sentences⇥ sentences 7! R



Approach: Regression
• Represent each pair of documents as a dense 

vector and minimizes the mean-squared-error 
between the function output and the score: 

• Tricky part is determining the function: linear, 
quadratic, neural network?
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Under-fitting
• Under-fitting occurs when you cannot get sufficiently low 

error on your training set. 

• Usually means the true function generating the data is 
more complex than your model.



Over-fitting
• Overfitting occurs when the gap between the 

training error and the test error (i.e. ‘generalization 
error’) is large. 

• Can occur if you have too many learned 
parameters (as we saw in the BoW example).



Finding a Good Model
• Regularization: encourages simpler models and 

can incorporate prior information. 

• Cross-validation: determine optimal model capacity 
by testing on held out data. 

• Information criteria (Akaike, Bayesian)



What Changes When We 
Switch to Deep Learning?

More hyperparameters: 
• Learning rate, number of layers, number of hidden 

units, type of nonlinearity, … 
• Sometimes cross-validated, oftentimes not. 
Higher model capacity:
• Deep nets can fit any function. 
• Various regularization methods (dropout, early 

stopping, weight-tying, …) 
Mini-batch Learning



Useful Tips in NLP:  
Sparse Matrices

• Often we deal with sparse features such as Bag-of-
Words vectors. Storing dense arrays of size 25K x 
V is impractical. 

• Sparse matrices (e.g. in scipy.sparse) allow usual 
matrix operations to be done efficiently without 
massive memory overhead.



Useful Tips in NLP:  
Feature Hashing/Sampling

• In some settings we have too many different features 
to handle (e.g. spam filtering, large corpus vocab). 

• Can deal with this by min counting, but this discards 
data and is hard to use in an online setting. 

• Different approaches: 
• Feature hashing: randomly map features to one of 

a fixed number of bins (used in spam filtering). 
• Sampling: only consider a small number of features 

when training (used for training word embeddings).


