
COS 495 Precept 2
Machine Learning in

Practice

Misha

Precept Objectives
• Review how to train and evaluate machine learning

algorithms in practice.

• Make sure everyone knows the basic jargon.

• Develop basic tools that you will use when
implementing and evaluating your final projects.

Terminology Review
Supervised Learning:
• Given a set of (example, label) pairs, learning how to

predict the label of a given example.
• Examples: classification, regression.
Unsupervised Learning:
• Given a set of examples, learning useful properties of the

distribution of these examples.
• Examples: word embeddings, text generation.
Other (e.g. Reinforcement, Online) Learning:
• Often involves an adaptive setting with a changing

environment. Gaining some interest in NLP.

Example Problem:
Document Classification

Given 50K (movie review, rating) pairs split into a
training set (25K) and test set (25K), learn a function

For simplicity, represent each review as a Bag-of-
Words (BoW) vector and each label as +1 or -1:

f : reviews 7! {positive, negative}

Xtrain: 25K V -dimensional vectors x1, . . . , x25K.

Ytrain: 25K numbers y1, . . . , y25K 2 {±1}.

Approach: Linear SVM
• We will use a linear classifier:

• We will target a low hinge loss on the test set:

f(x) = sign
�
w

T
x

�
, w 2 RV

X

(x,y)2(X,Y)test

max

�
0, 1� y · wT

x

Regularization
• If the vocabulary size is larger than the number of

training samples then there is an infinite number of
linear classifier that will perfectly separate the data.
This makes the problem ill-posed.

• We want to pick one that generalizes well, so we
use regularization to encourage a ‘less-complex’
classification function:

w

T
w + C

25KX

i=1

max

�
0, 1� yi · wT

xi

, C 2 R+

Regularization

Cross-Validation
Validation:
• To determine C, we hold out some (say 5K examples)

of our training data in order to use it as a temporary test
set (also called ‘dev set’) to test different values of C.

Cross-Validation:
• Split data into k dev sets (‘folds’) and determine C by

holding out each of them one a time and averaging the
result.

Parameters are often picked from powers of 10 (e.g. pick
the best-performing C out of 10-2, … , 102)

Evaluation Metrics:
Accuracy

• Although we target a low convex loss, in the end
we care about correct labeling alone. Thus for
results we report the average accuracy:

1

25K

X

(x,y)2(Xtest,Ytest)

1{f(x)=y}

where f(x) = sign
�
w

T

x

�

Evaluation Metrics:
Precision/Recall/F1

Sometimes, average accuracy is a poor measure of
performance. For example, say we want to detect
sarcastic comments, which do not occur very often,
and learn a system that marks them as positive.

precision =

True Positives

True Positives + # False Positives

recall =

True Positives

True Positives + # False Negatives

F1 =

2 · precision · recall
precision + recall

Precision v.s. Recall

Example Problem:
Document Similarity

Given a set of (sentence-1, sentence-2, score) triples
split into a training set (5K) and a test set (1K), learn
a function:

f : sentences⇥ sentences 7! R

Approach: Regression
• Represent each pair of documents as a dense

vector and minimizes the mean-squared-error
between the function output and the score:

• Tricky part is determining the function: linear,
quadratic, neural network?

1

10K

10KX

i=1

kyi � f(xi)k22

Under-fitting
• Under-fitting occurs when you cannot get sufficiently low

error on your training set.

• Usually means the true function generating the data is
more complex than your model.

Over-fitting
• Overfitting occurs when the gap between the

training error and the test error (i.e. ‘generalization
error’) is large.

• Can occur if you have too many learned
parameters (as we saw in the BoW example).

Finding a Good Model
• Regularization: encourages simpler models and

can incorporate prior information.

• Cross-validation: determine optimal model capacity
by testing on held out data.

• Information criteria (Akaike, Bayesian)

What Changes When We
Switch to Deep Learning?

More hyperparameters:
• Learning rate, number of layers, number of hidden

units, type of nonlinearity, …
• Sometimes cross-validated, oftentimes not.
Higher model capacity:
• Deep nets can fit any function.
• Various regularization methods (dropout, early

stopping, weight-tying, …)
Mini-batch Learning

Useful Tips in NLP:
Sparse Matrices

• Often we deal with sparse features such as Bag-of-
Words vectors. Storing dense arrays of size 25K x
V is impractical.

• Sparse matrices (e.g. in scipy.sparse) allow usual
matrix operations to be done efficiently without
massive memory overhead.

Useful Tips in NLP:
Feature Hashing/Sampling

• In some settings we have too many different features
to handle (e.g. spam filtering, large corpus vocab).

• Can deal with this by min counting, but this discards
data and is hard to use in an online setting.

• Different approaches:
• Feature hashing: randomly map features to one of

a fixed number of bins (used in spam filtering).
• Sampling: only consider a small number of features

when training (used for training word embeddings).

