Visible Light Communication

COS 463: Wireless Networks Lecture 23 **Kyle Jamieson**

What is VLC

Visible light communication (VLC)

- visible light source as a signal transmitter
- air as a transmission medium
- appropriate photodiode as a signal receiving component

What is VLC

- Key idea behind VLC
 - Eye cannot detect fast light switching but semiconductor- based photodetector can do

What is VLC – Light source

What is VLC — Light detector

PIN photodiode

- low cost, large area
- limited sensitivity

Image sensors

• Charge-Coupled Device (CCD): low cost, slow due to serial read-out

Motivation of VLC

- Privacy-preserving
- Resilient to Interference
- Radio spectrum crunch

 Ever-growing user demands meet limited radio spectrum

Looking into VLC spectrum

- VLC has a large frequency band
 - 390 nm 700 nm in wavelengths
 - 430 770 THz in frequency

Key difference from RF

- RF communication works in a Non-line-of-sight environment
- VLC requires Line-of-sight between the transmitter and the receiver

RF signals

VLC Modulation Schemes

- Many conventional schemes can be applied:
 - On-off keying (OOK)
 - Frequency-shift keying (FSK)
 - Pulse amplitude modulation (PAM)
 - Pulse width modulation (PWM)

Current VLC Systems

	Range (m)	Data rate	Modulation	Year
Langer <i>et.al.</i>	1.5	230Mb/s	OOK	2010
Khalid <i>et.al.</i>	0.5	1Gb/s	OFDM	2012
Kottke <i>et.al.</i>	0.3	1.25Gb/s	OFDM	2012
Sewaiwar et.al.	0.85	3Gb/s	OFDM+RGB	2015