Multiuser Communication and Capacity

COS 463 Wireless Networks Lecture 19 Kyle Jamieson

Review: Shannon Capacity

- Capacity, or maximum rate that a Gaussian channel supports arbitrarily-low bit error rates is $C = BW \log_2(1 + SNR)$ bits/s
- Reliable communication possible at rates R < C, not possible when R > C

Review: Sharing the Wireless Medium

• **Uplink to Alice,** Cathy and Bob both want to deliver information

- **Contention-based:** Unstructured, taking turns in time
- **TDMA:** Scheduled turns in time
- FDMA: Sharing via Different Frequency Bands
- **CDMA:** Sharing via Different Codes

What's the best we can do?

Today: Multiuser Capacity

- Building atop Shannon capacity of a single link:
- 1. What's the best we can do in the multiuser uplink channel?
- 2. What's the best we can do in the multiuser downlink channel?

Two-User Interference Channel

On the same frequency channel at the same time:

- Sender 1 sends signal x_1 with power P_1
- Sender 2 sends signal x_2 with power P_2

- **AP receives:** $y[m] = x_1[m] + x_2[m] + w[m]$
 - w[m] is background Gaussian Noise with variance σ^2

Extension of Capacity to Multiple Users

• **Single-channel** Shannon capacity is a **single rate** (bits/s/Hz)

- Generalizing for two users capacity becomes a region:
 - Set of all pairs (R_1, R_2) such that simultaneously,
 - User 1 can communicate at rate R_1 and
 - User 2 can communicate at rate R_2
 - Tradeoff between reliable communication rates:
 - If User 1 wants to increase its rate, User 2 may need to decrease its rate

Two-User Interference Channel: Single-User Bounds

Interference Doesn't Help

• Assumption: User 1's data are completely independent from User 2's data, and vice-versa

• Thought exercise: Point-to-point link sending with power $P_1 + P_2$ – Must outperform interfering link (otherwise interference helps)

• So therefore,
$$R_1 + R_2 < \log(1 + \frac{P_1 + P_2}{\sigma^2})$$

Two-User Interference Channel: Capacity Region

Successive Interference Cancellation (SIC)

- Receiver decodes information from both senders in three stages:
- 1. Decode data of user 2, treating signal from user 1 as noise
- 2. Reconstruct user 2's signal $(x'_2[m])$ from decoded data and subtract from aggregate received signal y[m], **cancelling it**: $y'[m] = y[m] - x'_2[m]$ $= x_1[m] + (x_2[m] - x'_2[m]) + w[m]$

3. Decode user 1's signal from y'[m]

SIC: Choice of User Order

Comparison with CDMA

- **CDMA:** Every user decoded treating the other users as noise
 - Achieves Point C
 - But, User 1 starves

- CDMA power control: Reduce power of the strong user
 - Achieves Point D

Comparison with TDMA/FDMA

- Allocate α time- or frequencyfraction to User 1; 1 – α to User 2
- Scale each user's power according to allocated proportion
- User 1 maximum rate: $\alpha \log \left(1 + \frac{P_1}{\alpha \sigma^2}\right)$
- User 2 maximum rate: $(1 - \alpha) \log \left(1 + \frac{P_2}{(1 - \alpha)\sigma^2}\right)$

Comparison with TDMA/FDMA

- Allocate as follows:
 - α time- or frequencyfraction to User 1;
 - 1 α to User 2

Tuning α (time/frequency and power) to P₁, P₂ can achieve a point on the A-B curve (optimal)

Today: Multiuser Capacity

- Building atop Shannon capacity of a single link:
- 1. What's the best we can do in the multiuser uplink channel?
- 2. What's the best we can do in the multiuser downlink channel?
 - Unknown information streams
 - Taking content of the data into account

Two-User Downlink Channel

• On the same frequency channel at the same time:

- User 1 receives signal x_1 with power P_1
- User 2 receives signal x_2 with power P_2

• **AP receives:** $y[m] = x_1[m] + x_2[m] + w[m]$

– w[m] is background Gaussian Noise with variance σ^2

Superposition Coding

Decoding Strong BPSK with weak QPSK

Power Difference Helps Superposition Coding

Today: Multiuser Capacity

- Building atop Shannon capacity of a single link:
- 1. What's the best we can do in the multiuser uplink channel?
- 2. What's the best we can do in the multiuser downlink channel?
 - Unknown information streams
 - Taking content of the data into account

Precoding for Known Interference

- Scenario: Hide digital data in an analog TV broadcast
- AP transmitting on downlink to user overhears broadcast
 - Sends digital data **x** intended for User 1
 - *s* is the stronger analog TV broadcast signal
- Background noise w

Precoding for Known Interference

- Want to distort TV broadcast signal *s* minimally
- Suppose we want to send one of four in-phase symbols (no Q):

Precoding for Known Interference

- Want to distort TV broadcast *s* minimally
- Suppose we want to send one of four in-phase symbols (no Q):

Tomlinson-Harashima Precoding

• Suppose we want to send one of four in-phase symbols (no Q):

Idea: Replicate constellation across amplitudes:

Transmit closest replicated constellation point:

Tomlinson-Harashima: Summary

- Effect is like superposition coding
- Choosing closest replicated constellation group minimizes power
 Transmitted signal depends on the interfering signal
- Result: Hide digital information in the analog transmission

Friday Precept: Lab 4 Hackathon

Tuesday Topic: Low-Power Wireless Communication