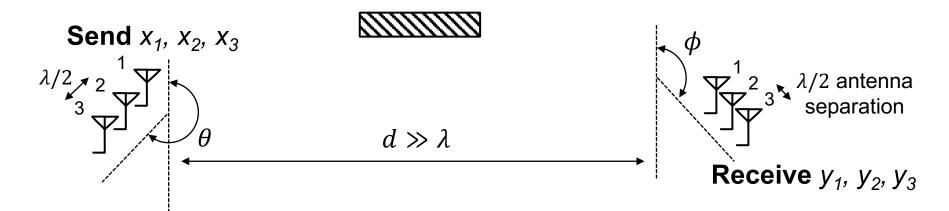
MIMO III: Channel Capacity, Interference Alignment

COS 463: Wireless Networks
Lecture 18
Kyle Jamieson

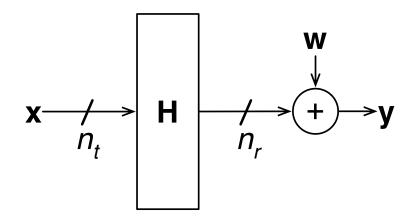

Today

1. MIMO Channel Degrees of Freedom

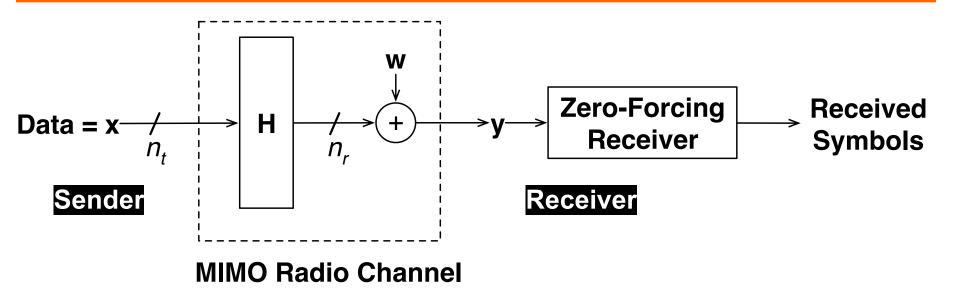
2. MIMO Channel Capacity

3. Interference Alignment

Review: The MIMO Channel

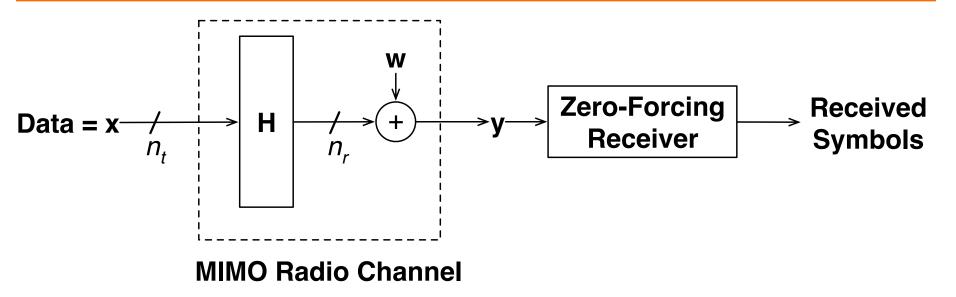

- Transmit **three symbols** per symbol time: $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
- Represent the MIMO channel as $\vec{y} = H\vec{x} + \vec{w}$

$$-\ \mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{11} \\ h_{21} & h_{22} & h_{11} \\ h_{31} & h_{32} & h_{11} \end{bmatrix} \text{ is the MIMO } \textbf{\textit{channel matrix, }} \vec{\textit{w}} \text{ noise}$$


Recap: MIMO Radio Channel

MIMO link with n_t transmit, n_r receive antennas

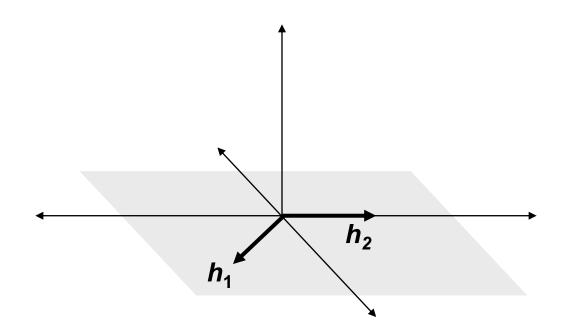
MIMO radio channel itself:



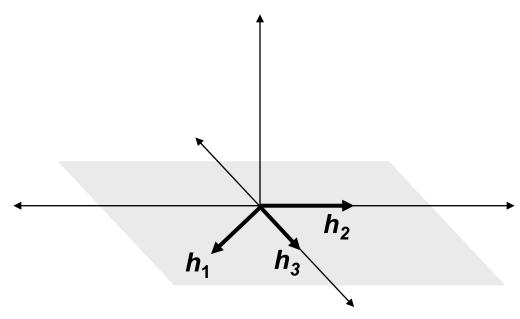
Recap: Zero-Forcing MIMO


- Transmitter does not know H (CSI)
- Each symbol time:
 - Sends n_t symbols (original Data), one per transmit antenna
- Data arrives mixed together at receiver antennas y

Recap: Zero-Forcing MIMO

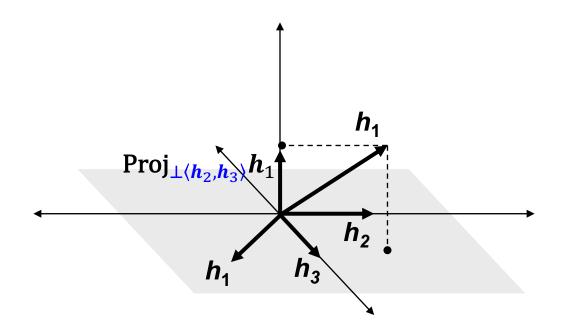

- Receiver knows H (CSI)
- Each symbol time:
 - Receive n_r mixed-up signals y
 - For each of the n_t transmitted symbols:
 - Zero-Forcing Receiver nulls all but that symbol

- Received signals live in an n_r-dimensional vector space
 - -e.g. n_r = 3 receive antennas → 3-D vector space:


Cancel by projection. Therefore, at most n_r streams possible

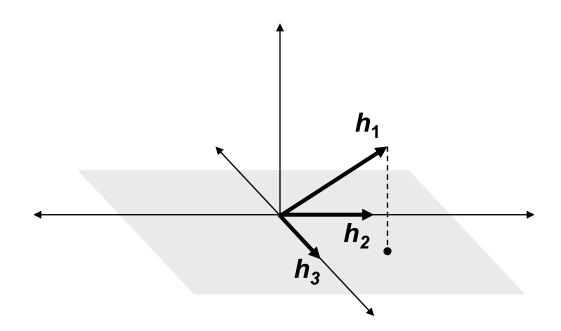
- One spatial signature per transmit antenna
 - $-e.g. n_r = 3$ receive, $n_t = 2$ transmit antennas:

Therefore, at most n_t streams possible


- Need enough strong physical paths in the wireless channel
 - e.g. $n_r = 3$, $n_t = 3$ but two physical paths confines $\{h_i\}$ to a plane

At most # physical paths possible streams

Need enough strong physical paths in the wireless channel


- e.g.
$$n_r$$
 = 3, n_t = 3 and three physical paths

At most # physical paths possible streams

Degrees of Freedom

 Figure of merit that summarizes number of streams possible is called degrees of freedom of H

Degrees of freedom = min { n_t, n_r, # strong paths }

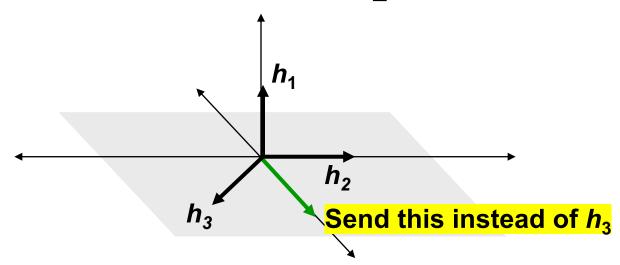
Today

1. MIMO Channel Degrees of Freedom

- 2. MIMO Channel Capacity
 - Vector Space Intuition
 - Eigenmode Forcing via Singular Value Decomposition

3. Interference Alignment

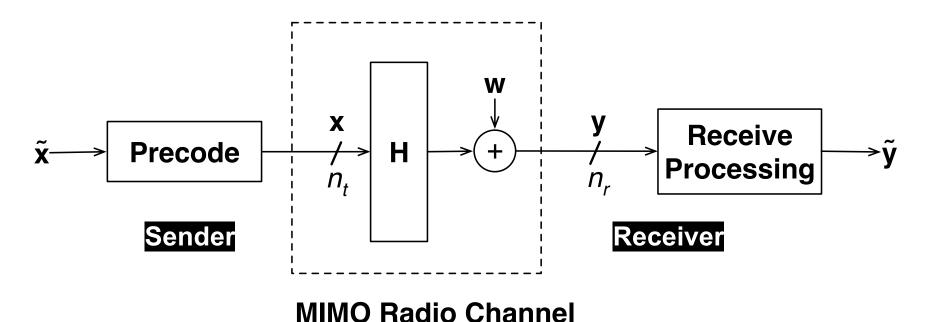
MIMO Channel Capacity: Motivation


- The story so far: Copy data into $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ each symbol time
 - Looked at when this performed well, poorly
 - Answer: MIMO channel conditioning ← "Rich multipath environment" around sender, receiver

* * *

- Today's first topic: Is this the best bits/seconds/Hz possible?
 - What's the capacity of a MIMO channel?
 - Similar question: Shannon capacity of a single-input, single-output (SISO) channel

Where's the Room for Improvement?


- Suppose the transmitter knows H (CSI)
- Zero-forcing receiver heard h₁, h₂, h₃
 - Power loss at receiver (due to $Proj_{\perp}$) for h_3

- Idea: Use transmit antennas 2 and 3 to send the ideal direction
 - No longer simply one symbol, one transmit antenna

How Might We Control Directions?

- Sender *precodes* data \tilde{x} into actual transmission in desired directions x
- Receiver processing changes accordingly

What Kind of Precoding?

 Recall, we wanted to make independent channels on each wireless channel path

Suppose H were diagonal:

$$\mathbf{H} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n_t} \end{bmatrix}$$

- Then the y_k channel output would only depend on x_k
 - Parallel, independent channels

Today

1. MIMO Channel Degrees of Freedom

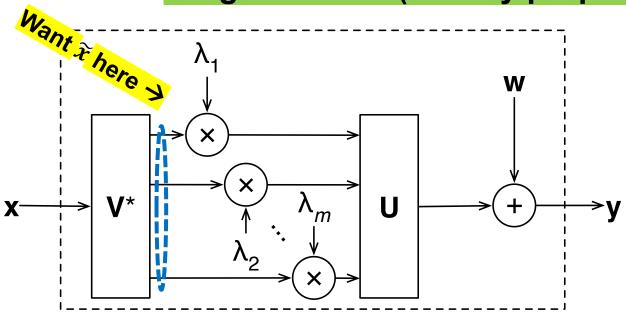
- 2. MIMO Channel Capacity
 - Vector Space Intuition
 - Eigenmode Transmission

3. Interference Alignment

Singular Value Decomposition (SVD)

- The insight lies in a special way of "factoring" matrix H
- Any matrix H has an SVD: H → UΛV*

 - U and V are unitary (UU* = U*U = VV* = V*V = I)


Interpreting the SVD Steps

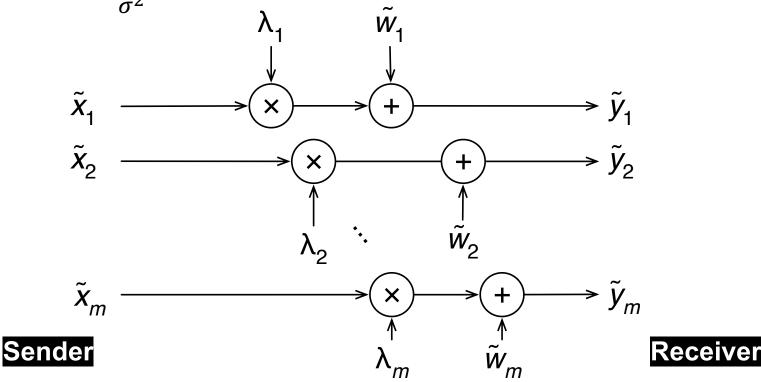
- Λ matrix with the $m=\min(n_t,n_r)$ singular values $\lambda_1,\cdots,\lambda_m$
 - One per significant radio channel path
- V* translates to the radio channel path coordinate system where channels are decoupled
- U translates back, to antenna coordinate system (undoes the V* translation)

Leveraging the SVD in a Practical System

- Alone, SVD does nothing (just analyzes what H does)
- Want to put data into the radio channel coordinate system

Insight: VV* = I (Unitary property)

MIMO Radio Channel H

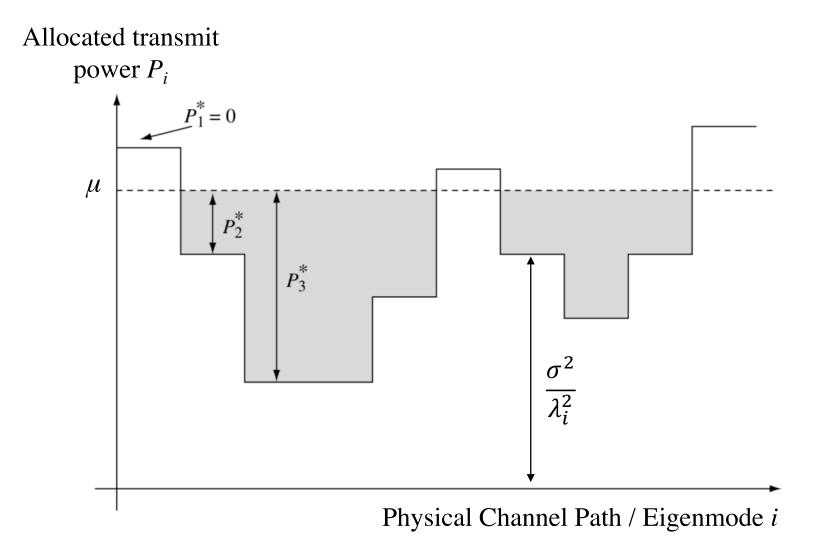

Leveraging the SVD in a Practical System

- Sender precodes with V, receiver "post-codes" with U*
 - V is unitary, so V*V = I (same for U)
 - So data sees independent channels
- This is called MIMO eigenmode transmission

A Model for Eigenmode Transmission

- Performance model for the eigenmode transmitter/receiver
- All channels decoupled, transmit power $P_k \rightarrow SNR$ on i^{th} channel: $\frac{P_i \lambda_i^2}{r^2}$

Performance: Uniform Power Division


 At high SNR (the common case in wireless LANs), with total transmit power P evenly divided over spatial paths

• Data rate =
$$\sum_{i=1}^{k} \log \left(1 + \frac{P\lambda_i^2}{kN_0} \right) \approx k \log(SNR)$$

* * *

- How can we do better?
 - Idea: Allocate different transmit powers P_i to different radio channel paths i
 - Problem we've seen before in 463 in OFDM context

Waterfilling for MIMO Power Allocation

MIMO Capacity: Takeaways

OFDM – MIMO analogy:

A transformation (OFDM: FFT, MIMO: SVD)
renders interfering channels in
(OFDM: frequency, MIMO: space) independent

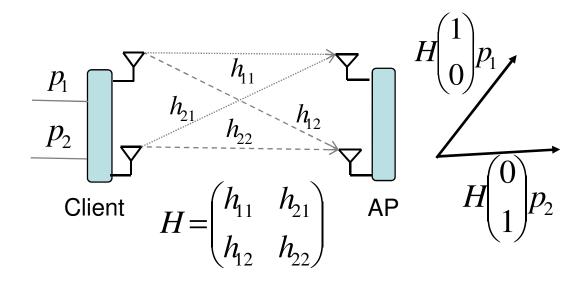
MIMO Eigenmode transmission:

- Transmitter sends directionally, along spatial paths of the radio channel
- Receiver listens directionally, along same spatial paths
- Achieves the MIMO channel capacity

Today

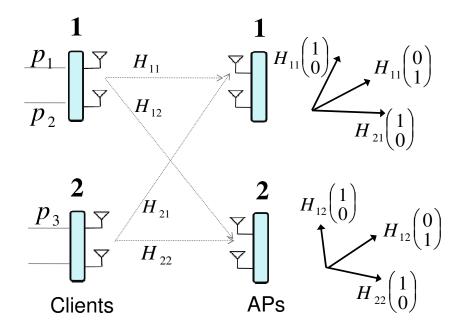
1. MIMO Channel Degrees of Freedom

2. MIMO Channel Capacity

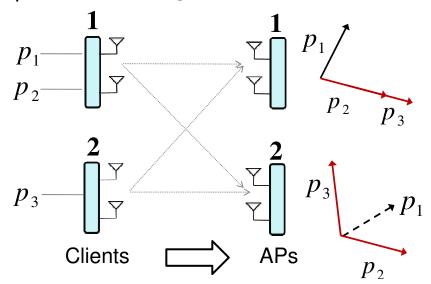

3. Interference Alignment

Interference Alignment (IA)

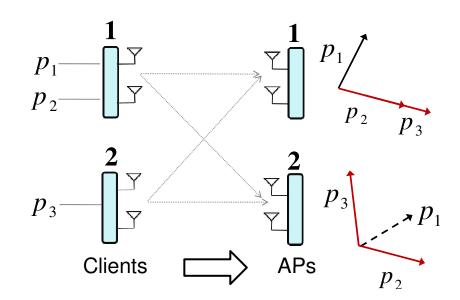
- Number of concurrent MIMO streams a client can send is limited by the number of antennas
 - Sending more streams results in interference between streams
 - Also limited by the amount of multipath in the environment
- New Idea: Use MIMO precoding techniques to align interference at receivers to advantage
- Requires APs cooperating via a wired backhaul
 - e.g. APs owned by one organization


MIMO channel representation

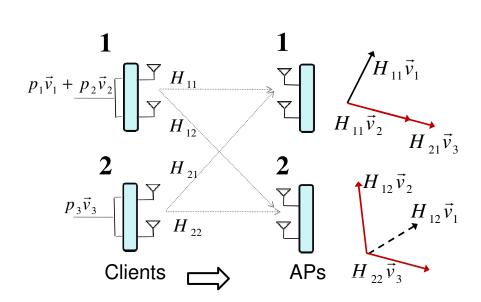
- As before, model channel from one antenna i to another j as one complex number h_{ij}
- Channel matrix H from a client to an AP is formed by [hi]


Uplink: Interference Between Networks

- Client 1 has 2 packets for AP 1; Client 2 has a packet for AP 2
 - Two-antenna APs, so each decoding in a 2-D space
- Three packets form three vectors in the 2-D space at each AP
 - Therefore, the APs can't decode these 3 packets

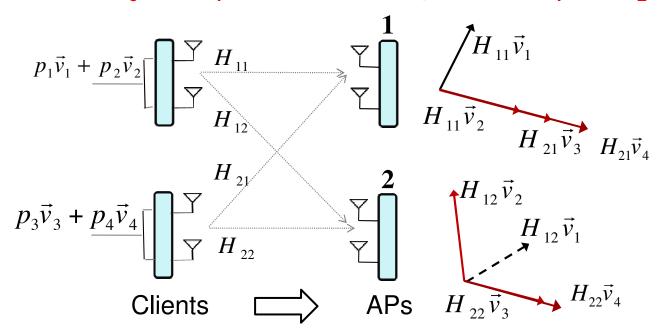

Interference alignment: Basic idea (1)

- 1. Clients transmit p_2 and p_3 aligned at access point (AP) 1
 - They add up in their one direction
- 2. AP 1 zero-forces to decode p_1 , sends it over backhaul to AP 2
- 3. AP **2** subtracts p_1 from the signal it receives, **cancelling it**

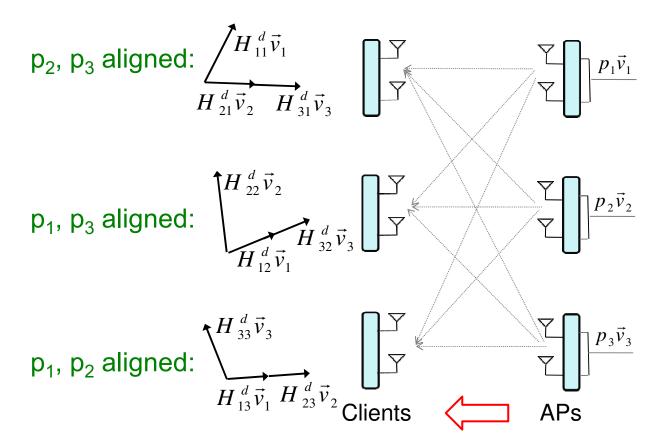

Interference alignment: Basic idea (2)

- 4. AP 2 uses zero-forcing receiver to decode p_2 , p_3
- 5. AP **2** sends p_2 to AP **1** (or onward on behalf of client **1**)

Uplink: Sketching a Practical Protocol


- Transmit precoding: client multiplies packet by vector v
 - Changes alignment at receiver
- 1. Client 1 picks random precoding vectors v_1 and v_2
- 2. Client 1 begins transmission

- **3.** Client **2** chooses v_3 so that $H_{11}v_2 = H_{21}v_3$
 - How does client 2 know H_{11} and H_{21} ?
 - Client 1 can include in its packet header


Uplink: Four Concurrent Packets?

- All packets but one (p_1) must align at AP 1, so AP 1 can decode
- Subtract p_1 from the four packets at AP **2**, leaving three packets
- AP 2 can only decode two packets at a time (2-d space)
 - Can't decode p_3 and p_4 at AP 2: Can only decode p_1 and p_2

Downlink Interference Alignment

- Clients can't exchange frames over backhaul
- Instead, align neighboring APs' interference at each client

Thursday Topic: Multiuser Channel Capacity