MIMO II: Physical Channel Modeling, Spatial Multiplexing

COS 463: Wireless Networks Lecture 17 Kyle Jamieson

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

3. Physical modeling of the MIMO channel

The problem of wireless interference

AP can estimate the channel, so can decode User A's signal (•)

The problem of wireless interference

AP can estimate the channel, so can decode User B's signal (•)

The problem of wireless interference

One received signal (•), two sent (•,•), so **AP can't decode**

Leveraging Multiple Antennas

• Now, the AP hears two received signals, one on each antenna:

Leveraging Multiple Antennas

Intuition: Zero-Forcing Receiver

- MIMO zero-forcing receiver
- 1. Rotate one antenna's signal (o)
- **2.** Sum the two antennas' signals together $(\circ + \Delta)$

Spatial Multiplexing: More "Streams"

- Send multiple streams of information over each of the spatial paths between sender and receiver
 - This is called *spatial multiplexing*

• Potential for increased capacity by a factor of *N* (minimum number of send or receive antennas):

$$C = BN \log(1 + SNR) \text{bits/s/Hz}$$

Potential for a multiplicative rate speed-up

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

3. Physical modeling of the MIMO channel

Physical Modeling of Multi-Antenna Channels

Gain intuition as to how the RF channel (ambient environment) impacts capacity

• Many physical antenna arrangement geometries possible

- Limit discussion today to *linear* antenna arrays, halfwavelength antenna spacing
 - Details vary with more sophisticated antenna arrangements, but concepts do not

Line-of-Sight SIMO Channel: A Second Look

• Vector notation for the system: $\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \vec{y} = \vec{h}x + \vec{w}$

• Wireless channel is now a three-tuple vector: $\vec{h} = \begin{bmatrix} ae^{j2\pi d_1} \\ ae^{j2\pi d_2} \\ ae^{j2\pi d_3} \end{bmatrix}$

Line-of-Sight SIMO Channel: A Second Look

- Antenna separations:
 - Assume $d_1 = d$

$$-d_2 \approx d + \frac{1}{2}\lambda\cos\phi$$
$$-d_2 \approx d + \lambda\cos\phi$$

Wireless channel:

$$\vec{h} = a e^{j2\pi d/\lambda} \begin{bmatrix} 1 \\ e^{j\pi\cos\phi} \\ e^{j2\pi\cos\phi} \end{bmatrix}$$

Line-of-Sight SIMO Channel: The Spatial Signature

The wireless channel decomposes into two components:

$$\vec{h} = \underbrace{ae^{j2\pi d/\lambda}}_{\text{Path}} \begin{bmatrix} 1\\ e^{j\pi\cos\phi}\\ e^{j2\pi\cos\phi} \end{bmatrix}$$

$$\underbrace{f_{ae^{j2\pi d/\lambda}}}_{\text{Spatial Signature}} \underbrace{f_{ae^{j2\pi d/\lambda}}}_{\text{Spatial Spatial Spat$$

The angle of arrival of the sender's signal at the receive array determines the spatial signature

Line-of-Sight SIMO Channel: Maximal Ratio Combining (Review)

• Maximal ratio combining "projects" the received signals \vec{y} onto the receive spatial signature:

$$- \tilde{y} = \vec{h}^* \vec{y}$$

- **Reverses the phases** in the spatial signature to **align** each antenna's component of the above sum
 - SNR improvement but no multiplexing

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

- 3. Physical modeling of the MIMO channel
 - Line-of-Sight MIMO Channel
 - Geographically-Separated Transmit Antennas
 - Geographically-Separated Receive Antennas
 - MIMO Link in Multipath

The Line-of-Sight MIMO Channel

- Want to transmit **three symbols** per symbol time: $\vec{x} = \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}$
- h_{kl} : channel between kth receive and lth transmit antenna

•
$$\vec{y} = H\vec{x}$$
, where $H = \begin{bmatrix} h_{11} & h_{12} & h_{11} \\ h_{21} & h_{22} & h_{11} \\ h_{31} & h_{32} & h_{11} \end{bmatrix}$ is the MIMO *channel matrix*

The Line-of-Sight MIMO Channel: Channel Matrix

- *h_{kl}*: channel between *k* th receive and *l* th transmit antenna
- Suppose as before, $d_{11} = d$ - Then $d_{kl} = d + \frac{1}{2}(k-1)\cos\phi + \frac{1}{2}(l-1)\cos\theta$ Tx 1: Tx 2: Tx 3: • Channel matrix $H = ae^{j2\pi d/\lambda} \begin{bmatrix} 1 & e^{j\pi\cos\theta} & e^{j\pi2\cos\theta} \\ e^{j\pi\cos\phi} & e^{j\pi(\cos\phi+\cos\theta)} & e^{j\pi(\cos\phi+2\cos\theta)} \\ e^{j\pi(2\cos\phi+2\cos\theta)} & e^{j\pi(2\cos\phi+2\cos\theta)} \end{bmatrix}$

The Line-of-Sight MIMO Channel: Identical Spatial Signatures

• Transmit antenna 2's channel and spatial signature:

$$\begin{bmatrix} h_{12} \\ h_{22} \\ h_{32} \end{bmatrix} = a e^{j2\pi \left(\frac{d}{\lambda} + \cos \theta\right)} \begin{bmatrix} 1 \\ e^{j\pi \cos \phi} \\ e^{j2\pi \cos \phi} \end{bmatrix}$$

The Line-of-Sight MIMO Channel: Takeaways

- Spatial signature tells us how to phase-shift the received signals in order to align them
- Spatial signature of Transmit antenna 1
 - Equals spatial signature of Transmit antenna
 - Equals spatial signature of Transmit and the 3
- So any receiver attempt is light signal from Transmit antenna 1
 - Also aligns transmit antennas 2 and 3
- Result is interference between x₁, x₂, x₃
 - Can send same single symbol x on all transmit antennas
 - Results in same power gain as MRC

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

- 3. Physical modeling of the MIMO channel
 - Line-of-Sight MIMO Channel
 - Geographically-Separated Transmit Antennas
 - Geographically-Separated Receive Antennas
 - MIMO Link in Multipath

Geographically-Separated Transmit Antennas

Different spatial signatures for Transmit Antenna 1, 2

Spatial Signature = Series of Phase Differences

The Zero-Forcing Receiver (via Spatial Signatures)

- Suppose want to receive from Transmit Antenna 1
 - (Recall:) Rotate Receive Antenna 2's signal so that Signature 2 cancels itself

The Zero-Forcing Receiver (via Spatial Signatures)

- One spatial signature = One direction
- Zero forcing Antenna 2 is projection

- Onto subspace \perp to h_{ϕ_2}

MIMO Separability: Discussion

- **Transmit antenna** separation \rightarrow
 - Spatial signature separation \rightarrow
 - Better projection,
 - Better performance

- MIMO antenna array without multipath
 - No transmit antenna separation
 - No spatial signature separation
 - Cancel Tx Ant 2: cancels Tx Ant 1
 - No spatial multiplexing

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

- 3. Physical modeling of the MIMO channel
 - Line-of-Sight MIMO Channel
 - Geographically-Separated Transmit Antennas
 - Geographically-Separated Receive Antennas
 - MIMO Link in Multipath

Geographically-Separated Receive Antennas

Different spatial signatures for Receive Antennas 1, 2
 – Rows, instead of columns in the MIMO matrix

Today

1. Graphical intuition in the I-Q plane

2. Physical modeling of the SIMO channel

- 3. Physical modeling of the MIMO channel
 - Line-of-Sight MIMO Channel
 - Geographically-Separated Transmit Antennas
 - Geographically-Separated Receive Antennas
 - MIMO Link in Multipath

MIMO in Multipath

Channel matrix H has two different transmitter spatial signatures

Different Spatial Signatures: Intuition

- Channel matrix H has two different spatial signatures
- Imagine perfect signal "relays" A, B
 - This H is the product of:
 - Geographically-separated receive antenna channel
 - Geographically-separated transmit antenna channel

"Poorly-Conditioned" MIMO channels

spatial signatures are closer aligned

Friday Precept: Exploiting Doppler

Tuesday Topic: MIMO III: MIMO Channel Capacity, Interference Alignment