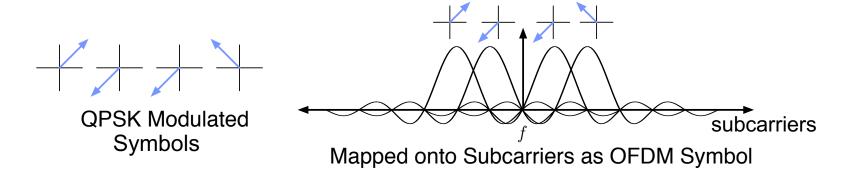
MIMO I: Spatial Diversity

COS 463: Wireless Networks
Lecture 16

Kyle Jamieson

What is MIMO, and why?


- Multiple-Input, Multiple-Output (MIMO) communications
 - Sends and receive more than one signal on different transmit and receive antennas

- We've already seen frequency, time, spatial multiplexing in 463:
 - MIMO is a more powerful way to multiplex wireless medium in space
 - Transforms multipath propagation from an impediment to an advantage

Many Uses of MIMO

- At least three different ways to leverage space:
- 1. Spatial diversity: Send or receive redundant streams of information in parallel along multiple spatial paths
 - Increases reliability and range (unlikely that all paths will be degraded simultaneously)
- 2. Spatial multiplexing: Send independent streams of information in parallel along multiple spatial paths
 - Increases rate, if we can avoid interference
- 3. Interference alignment: "Align" two streams of interference at a remote receiver, resulting in the impact of just one interference stream

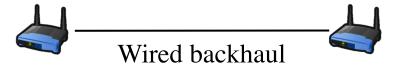
MIMO-OFDM

- Multipath fading: different effects on different frequencies
 - OFDM: Orthogonal Frequency Domain Multiplexing
 - Different subcarriers are independent of each other
- Channel model for OFDM: y = h·x + w
 - A single complex number h captures the effect of the channel on data in a particular subcarrier
- For MIMO: Think about each subcarrier, independent of other subcarriers

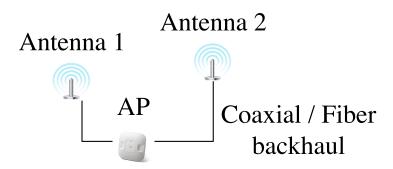
Plan

- 1. Today: Diversity in Space
 - Receive Diversity
 - Transmit Diversity

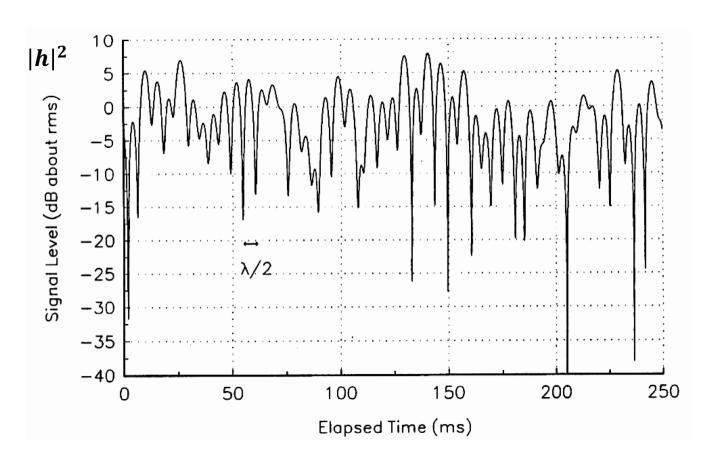
2. Next time: Multiplexing in Space


3. Next time: Interference Alignment

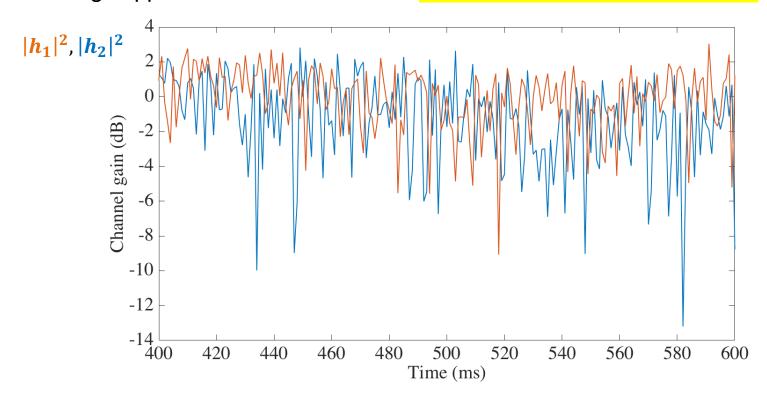
Path Diversity: Motivation


1. Multi-Antenna Access Points (APs), especially 802.11n,ac:

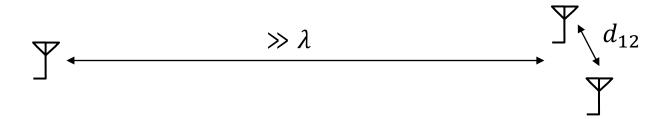
2. Multiple APs cooperating with each other:



3. Distributed Antenna systems, separating antenna from AP:


Review: Fast Fading

- Typical outdoor multipath propagation environment, channel h
- On one link each subcarrier's power level experiences Rayleigh fading:



Uncorrelated Rayleigh Fading

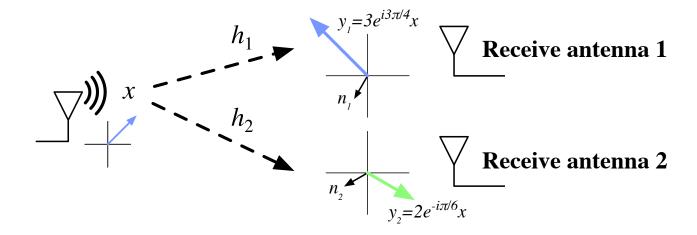
- Suppose two antennas, separated by distance d₁₂
- Channels from each to a distant third antenna (h₁₃, h₂₃) can be uncorrelated
 - Fading happens at different times with no bias for a simultaneous fade

When is Fading Uncorrelated, and Why?

- Channels from each antenna (h₁₃, h₂₃) to a third antenna
 - Channels are uncorrelated when $d_{12} > \approx 1.5\lambda$
 - Channels correlated, fade together when $d_{12} < \approx \lambda$

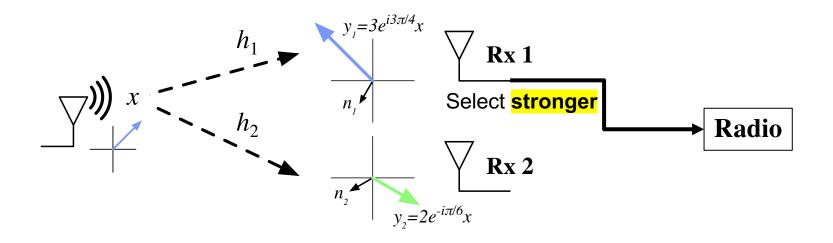
- This correlation distance depends on the radio environment around the pair of antennas
 - Increases, e.g., atop cellular phone tower

Plan


- 1. Today: Diversity in Space
 - Receive Diversity
 - Selection Diversity
 - Maximal Ratio Combining
 - Transmit Diversity

2. Next time: Multiplexing in Space

Next time: Interference Alignment

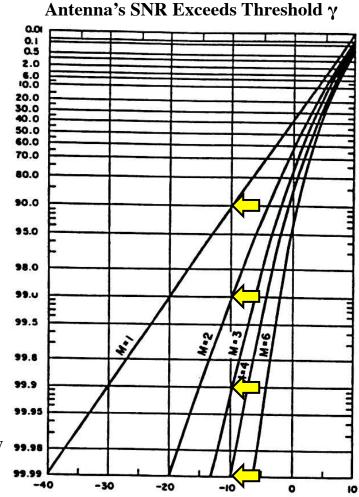

Channel Model for Receive Diversity

- One transmit antenna sends a symbol to two receive antennas
 - Receive diversity, or Single-Input, Multi-Output (SIMO)

- Each receive antenna gets own copy of transmitted signal via
 - Different path
 - Potentially different channel

Selection Diversity

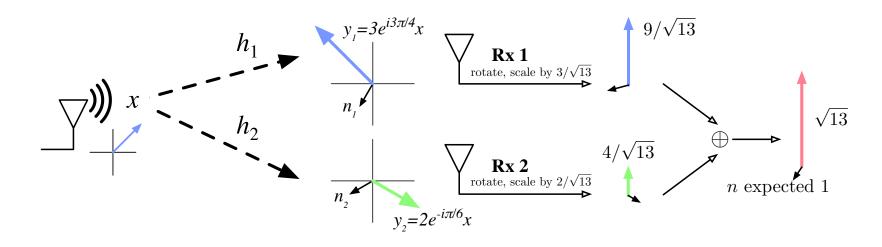
- Two receive antennas share one receiving radio
- Chooses the antenna with stronger signal, sends that to the radio
 - Helps reliability (both unlikely bad)
 - Wastes received signal from other antenna(s)


Selection Diversity: Performance Improvement

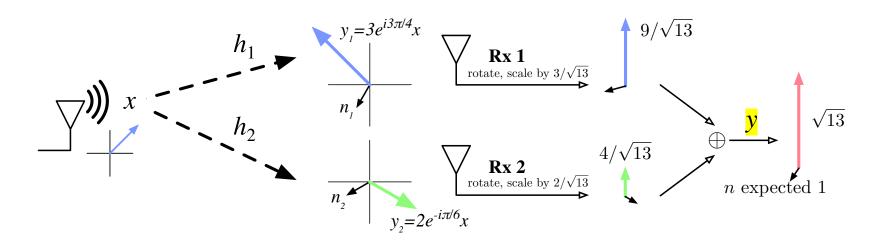
- In general, might have M receive antennas (average SNR Γ)
 - $-\gamma_i$: SNR of the i^{th} receive antenna

 Probability selected SNR is less than some threshold y:

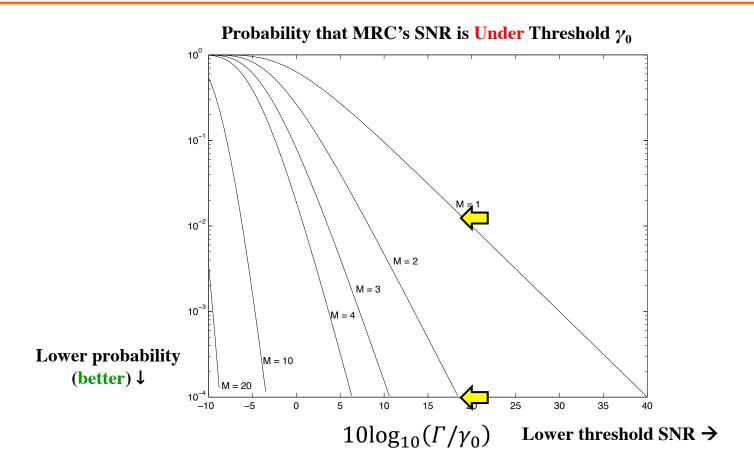
$$-\Pr[\gamma_1, \cdots, \gamma_M \le \gamma] = (\Pr[\gamma_i \le \gamma])^M$$


 One more "9" of reliability per additional selection branch

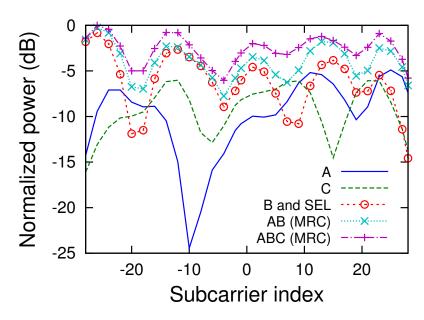
Probability (%) that Selected


Higher probability (better) ↓

Leveraging All Receive Antennas


- Want to just add the two received signals together
 - But if we did the signals would often cancel out
- Solution: Receive M radios, align signal phases, then add
 - Requires M receive radios, in general

How to Choose Weights?


- Suppose phase of incoming signal on the i th branch is θ_i
- To align $\{y_i\}$ in phase, let the combiner output $y = \sum_{i=1}^{M} a_i e^{-j\theta_i}$
 - How to choose amplitudes a_i?
- Idea: Put more weight into branches with high SNR: Let $a_i = \gamma_i$
 - This is called *Maximal Ratio Combining (MRC)*

MRC: Performance Improvement

Two "9"s of reliability improvement between one (i.e., no MRC) and two MRC branches

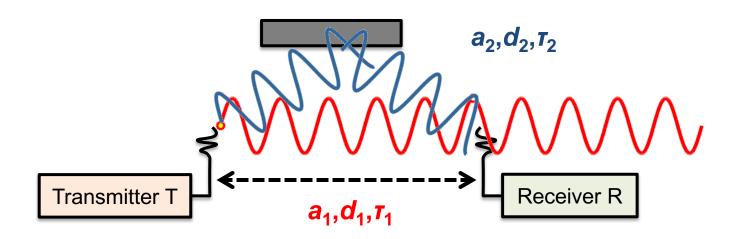
Selection Diversity, in Frequency

- Antennas A and C experience different fades on different subcarriers
- Selection Combining ("SEL") improves but certain subcarriers still experience fading
- MRC increases power and flattens nulls, leading to fewer bit errors

MRC's Capacity Increase

- MRC with M branches increases SNR
 - Increased Shannon capacity

- Sub-linear (logarithmic) capacity increase in M:
 - $-C_{MRC} = BW \cdot \log(1 + M \cdot SNR)$ bits/second/Hz


Plan

- 1. Today: Diversity in Space
 - Receive Diversity
 - Transmit Diversity
 - Channel reciprocity
 - Transmit beamforming
 - Introduction to Space-Time Coding: Alamouti's Scheme

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

An Aside: Radio Channels are "Reciprocal"

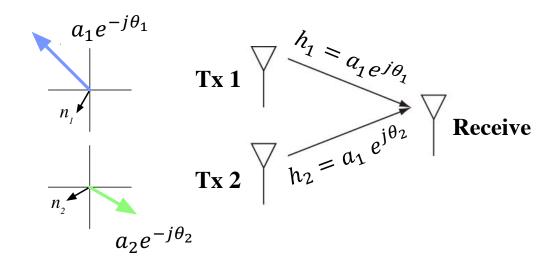
- Forward channel (T to R) is $h_{TR} = a_1 e^{j2\pi d_1/\lambda} + a_2 e^{j2\pi d_2/\lambda}$
- Switch T and R roles, changing nothing else:
 - **Reverse channel** (R to T) is $h_{RT} = a_1 e^{j2\pi d_1/\lambda} + a_2 e^{j2\pi d_2/\lambda} = h_{TR}$
 - The reverse radio channel is "reciprocal"
- Practical radio receiver circuitry induces differences between h_{TR} , h_{RT}

Transmit Diversity: Motivation

- More space, power, processing capability available at the transmitter?
 - Yes, likely! e.g. Cellular base station, Wi-Fi AP transmitting downlink traffic to mobile

- But, a (possible) requirement: May need to know the radio channel at the transmitter before the transmission commences
 - cf. receive diversity: channel from preamble reception

- Then, a tension: Separate transmit antennas for path diversity
 - Antenna 1, Antenna 2, transmit radio non co-located
 - Then, harder to move transmit signals, radio channel measurements i.e. channel state information (CSI) between the three locations


Transmit Beamforming: Motivation

- Suppose the transmitter knows the CSI to receivers
- Transmitters align their signals so that constructive interference occurs at the single receive antenna
 - Align before transmission, not after reception (receive beamforming)

Transmit Beamforming

- Leverage channel reciprocity, receive beamforming "in reverse"
- Send one data symbol x from two antennas

Multiply (pre-code) x by the complex conjugate of each channel

Plan

- 1. Today: Diversity in Space
 - Receive Diversity
 - Transmit Diversity
 - Channel reciprocity
 - Transmit beamforming
 - Introduction to Space-Time Coding: Alamouti's Scheme

2. Next time: Multiplexing in Space

3. Next time: Interference Alignment

Alamouti Scheme: Motivation

Suppose transmitters don't know CSI information to receiver: what to do?

- 1. Naïve beamforming (just send same signals)
 - Signals would often cancel out

2. Repetition

- Each antenna takes turns transmitting same symbol
 - Receiver combines coherently
- Use *M* symbol times
 - Increases diversity ("SNR" term in Shannon capacity)
 - Cuts Shannon rate by 1/M factor

Alamouti Scheme

- Scope: A two-antenna transmit diversity system (M = 2)
- Sends two symbols, s₁ and s₂, in two symbol time periods:

Symbol Time Period	1	2
Antenna 1:	Send s_1	Send $-s_2^*$
Antenna 2:	Send s_2	Send s_1^*

Then, by superposition the receiver hears:

Symbol Time Period	1	2
Receiver hears:	$h_1 s_1 + h_2 s_2$	$-h_1s_2^* + h_2s_1^*$

Alamouti Receiver Processing

Symbol Time Period 1 2

Receiver hears:
$$y[1] = h_1 s_1 + h_2 s_2$$
 $y[2] = -h_1 s_2^* + h_2 s_1^*$ $y^*[2] = h_2^* s_1 - h_1^* s_2$

$$\begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$

- Rewrite into two equations in two unknowns (s_1 and s_2):
 - (Receiver has CSI information)

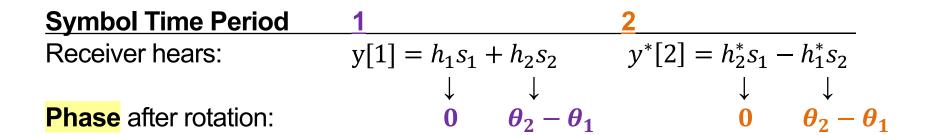
$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \propto \begin{bmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{bmatrix} \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix}$$

But, what's happening in terms of the physical wireless channel?

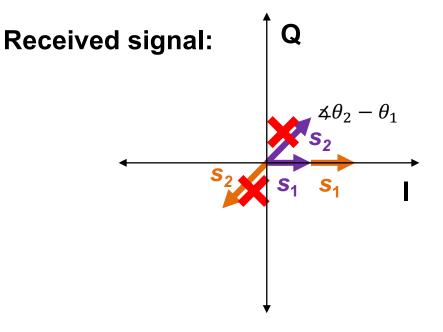
Intuition for Alamouti Receiver Processing

Start with the inverted channel matrix:

$$\begin{bmatrix} \mathbf{s_1} \\ s_2 \end{bmatrix} \propto \begin{bmatrix} \mathbf{h_1^*} & \mathbf{h_2} \\ h_2^* & -h_1 \end{bmatrix} \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix}$$


- Consider the computation for s₁:
 - Rotate y[1] by $-\theta_1$
 - Rotate $y^*[2]$ by θ_2
 - Sum the result

Alamouti: Impact of Phase Rotations

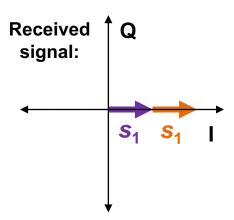

- Consider the computation for s₁:
 - Rotate y[1] by $-\theta_1$
 - Rotate $y^*[2]$ by θ_2
 - **Sum** the result

Symbol Time Period	1	2
Receiver hears:	$y[1] = h_1 s_1 + h_2 s_2$	$y^*[2] = h_2^* s_1 - h_1^* s_2$
	\downarrow \downarrow	\downarrow \downarrow
Phase after rotation:	$0 \qquad \theta_2 - \theta_1$	$0 \qquad \theta_2 - \theta_1$

Alamouti: Receiver-Side Picture

Receiver then sums all terms above:

Alamouti: Interpretation


$$\begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \propto \begin{bmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{bmatrix} \begin{bmatrix} y[1] \\ y^*[2] \end{bmatrix}$$

$$\mathbf{H}$$

- Two new signal dimensions:
- 1. Multiply two received symbols by the top column of H
 - Name this dimension $[h_1^* \quad h_2]^T$
 - s₁ arrives along this dimension (only!)
- 2. Multiply two received symbols by the **lower column of H**
 - Name this dimension $[h_2^* h_1]^T$
 - s₂ arrives along this dimension (only!)

Alamouti: Performance

• Two dimensions: $[h_1^* \quad h_2]^T$, $[h_2^* \quad -h_1]^T$

- Send half power on each antenna
 - For both symbols, $SNR = \frac{|h|_1^2 + |h|_2^2}{2\sigma^2}$
- Rate gain from enhanced SNR, and maintains one symbol per symbol time

Multi-Antenna Diversity: Summary

- Leverage path diversity
 - Decrease probability of "falling into" to deep Rayleigh fade on a single link
- Defined new "dimensions" of independent communication channels based on space

Thursday Topic: MIMO II: Spatial Multiplexing

Friday Precept: Exploiting Doppler