#### Receiver Designs for the Radio Channel



#### COS 463: Wireless Networks Lecture 15 **Kyle Jamieson**

[Parts adapted from C. Sodini, W. Ozan, J. Tan]

#### Today

- 1. Delay Spread and Frequency-Selective Fading
- 2. Time-Domain Equalization
- 3. Orthogonal Frequency Division Multiplexing

#### Last Time: Power Delay Profile, Delay Spread, Excess Delay



#### Last Time: Multipath causes Frequency Selectivity

 Interference between reflected and line-of-sight radio waves results in frequency dependent fading



#### **Problem: Inter-symbol interference (ISI)**



- Transmitted signal
- Received signal with ISI

#### **Problem: Inter-symbol interference (ISI)**



- Transmitted signal
- Received signal with ISI
- ISI at one symbol depends on the value of other symbols

## Today

- 1. Delay Spread and Frequency-Selective Fading
- 2. Time-Domain Equalization
- 3. Orthogonal Frequency Division Multiplexing

#### Wideband System Design



$$f(t) = (p * h)(t) * p^*(-t)$$

 Composite channel f (made up of pulse shape, radio channel, and matched filter)

#### **Zero-Forcing Equalizer**

#### **Receiver:**



#### **Physical Layer Preamble**



• Sequence of symbols known to both transmitter & receiver

#### **Minimal Mean-Squared Error Equalizer**

 Goal: h<sub>eq</sub> that minimizes mean-squared error (MSE) between received and transmitted symbols from preamble

$$MSE = \sum_{k=0}^{K} |d_k - \widehat{d_k}|^2$$

Assumes packet has a preamble, channel stays same over a packet time



#### **Decision-feedback Equalizer**

Idea: Subtract the interference caused by already detected data (symbols)



#### **Decision-feedback Equalizer**



 The DFE has access to the symbol decisions, computes error signal to update feedback filter (complex!)

## Today

- 1. The Culprits: Delay Spread and Frequency-Selective Fading
- 2. Time-Domain Equalization
- 3. Orthogonal Frequency Division Multiplexing

#### **Problem: Inter-symbol interference (ISI)**



- Transmitted signal
- Received signal with ISI

# Symbol time determines frequency bandwidth



## A narrowband signal "fits into" the coherence bandwidth

• Over what frequency range is the channel approximately the same? This is the *coherence bandwidth*  $W_c \approx \frac{1}{2T_d}$ 



## Simple Solution: Slow down



- Transmitted signal O
- Received signal

#### Wideband versus OFDM



## Subcarriers are "Orthogonal"

- Peaks of each subcarrier coincide in frequency with zeros of other subcarriers
  - Carriers can be packed very densely with minimal interference
  - Requires very good control over frequencies



#### **One OFDM symbol in time**



#### **Difference between FDM and OFDM**



## **Orthogonality of Subcarriers**



## **OFDM: System Design**



#### **Problem: Inter-OFDM Symbol Interference**



#### **Problem: Receiver synchronization**



#### Interference solution: Inter-symbol guard interval



#### Synchronization solution: Cyclic prefix



Symbol Guard Intervals Filled With Cyclic Prefix



#### **OFDM signal: Frequency-Domain view**



**Uniform power** in the frequency domain over the OFDM signal bandwidth

#### **OFDM signal: Time Domain View**



- Many low-frequency sinusoids in the time domain
- Occasionally in time, many will all constructively interfere
  - Result: High ratio of peak power / average power

#### **Peak to Average Power & Transmit Amplifiers**

- Transmit power amplifier sits just before the transmit antenna
- Peak power in non-linear region causes signal distortion
  - So lower input signal level so that peak input power falls in linear region



- **High** peak to average power ratio (PAPR)  $\rightarrow$ 
  - Low average power level  $\rightarrow$ 
    - Signal mostly uses fewer levels in discrete representation, so high quantization error (another form of distortion)

## An OFDM Modem



## **Estimating the Channel**

- Transmit known OFDM preamble symbol x
  - In frequency domain on frequency *i*, denote preamble  $X_i$
- After FFT, hears frequency domain value  $Y_i$



#### **Packet detection**

OFDM uses two identical, repeated symbols s<sub>1</sub>, s<sub>2</sub> in the preamble for packet detection:



• Receiver radio is always listening, receiving samples

– Call this received sample stream r[n]

## Searching for the preamble in noise

- Suppose each preamble symbol is of length *L*
- Receiver computes  $c[n] = \sum_{k=0}^{L-1} r[n+k]r^*[n+k+L]$

Computing *c*[0]:

- Angle of each term in the sum is random
- Sum of complex numbers with random angle ≈ 0

   c[0] ≈ 0

#### Search window encounters preamble

- Suppose preamble at position  $n_0$
- Receiver computes  $c[n] = \sum_{k=0}^{L-1} r[n+k]r^*[n+k+L]$



- <sup>∡</sup>(zz<sup>\*</sup>) = 0, so angle of each term
   in the sum is ≈ 0
- Sum of complex numbers with ≈ 0 angle is large – c[n₀] is large

#### **Schmidl-Cox Packet Detection**

- $c[n] = \sum_{k=0}^{L-1} r[n+k]r^*[n+k+L]$
- Normalize power fluctuations in r[n], by measuring power:  $-p[n] = \sum_{k=0}^{L-1} |r[n+k]|^2$
- Schmidl-Cox Packet Detection signal: m[n] = c[n] / p[n]



#### A Closer Look at Carrier Frequency Offset



- Limited precision of frequency oscillators
- Up-convert baseband signal  $s_n$  to passband signal  $y_n$ :  $y_n = s_n e^{j2\pi f_{tx}nT_s}$
- Down-convert passband signal  $y_n$  back to baseband:  $r_n = s_n e^{j2\pi f_{tx}nT_s} e^{j2\pi f_{rx}nT_s}$  $= s_n e^{j2\pi\Delta f nT_s} (\Delta f = f_{rx} - f_{tx})$

f

## **Estimating Carrier Frequency Offset**

• Because of carrier frequency offset,  $s_2 = s_1 e^{j2\pi\Delta f NT_s}$ -  $c[n_0] = \sum_{k=0}^{L-1} r[n_0 + k]r^*[n_0 + k + L]$ 



- Consider the  $k^{\text{th}}$  term in sum:  $r[n_0 + k]r^*[n_0 + k]e^{j2\pi\Delta fNT_s}$ - This is equal to  $e^{j2\pi\Delta fNT_s}|r[n_0 + k]|^2$ 
  - So all terms have the **same angle**  $2\pi\Delta f NT_s$
- So, carrier frequency offset estimator  $\widehat{\Delta f} = \frac{4c[n_0]}{2\pi NT_s}$

## Sample Clock Offset



- The transmitter and receiver may sample the signal at slightly different rates, leading to a sample time offset ζ
- All subcarriers experience the same sampling delay, but travel over different frequencies

#### **Correcting Sample Clock Offset** in the Frequency Domain



- Sample clock offset : slope
- Residual CFO: intersection with y-axis

#### **Per-subcarrier Bit Rate Choice**



## Example: IEEE 802.11a, 802.11g

- OFDM with up to 48 subcarriers
  - Subcarrier spacing is 312.5 KHz
  - Subcarriers modulated: BPSK, QPSK, 16-QAM, or 64-QAM
- Uses a convolutional code at a rate of <sup>1</sup>/<sub>2</sub>, 2/3, <sup>3</sup>/<sub>4</sub>, or 5/6 to provide forward error correction
- Results in data rates of 6, 9, 12, 18, 24, 36, 48, and 54 MBps
- Cyclic prefix is 25% of a symbol time (16 vs 64)

Friday Precept: Lab 4: Single-carrier transceiver on the HackRF hardware