The Radio Channel

COS 463: Wireless Networks Lecture 14 Kyle Jamieson

[Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P. Steenkiste]

Motivation

- The radio channel is what limits most radio systems the main challenge!
 - Understanding its properties is therefore key to understanding radio systems' design

- There is no single radio channel, but instead variation in many different properties
 - Carrier frequency, environment (*e.g.* indoors, outdoors, satellite, space)

Many different models covering many different scenarios

Channel and Propagation Models

- A channel model describes what happens
 - Gives channel output power for a particular input power
 - "Black Box" no explanation of mechanism
 - Requires appropriate statistical parameters (*e.g.* loss, fading)

- A propagation model describes how it happens
 - How signal gets from transmitter to receiver
 - How energy is redistributed in time and frequency
 - Can inform channel model parameters

Modeling (from a high-level perspective)

Today

- 1. Large scale channel models
 - Free space model
 - Two-ray ground model
- 2. Small-scale channel models
- 3. Equalization: Coping with the channel

The dBm unit

If we take one milliwatt as a reference then we have a unit of absolute power called *dBm*:

$$P_{dBm} = 10 \log_{10} \left(\frac{P_1}{10^{-3}} \right)$$

• Where *P*₁ is the power we want to express in dBm, **in Watts**

Power (linear)	Power (dBm)
10 W	40 dBm
1 W	30 dBm
100 mW	20 dBm
10 mW	10 dBm
1 mW	0 dBm
10 μW	-20 dBm
1 μW	-30 dBm
1 nW	-60 dBm
1 pW	-90 dBm

Goal: Power Budget

 P_{RX} (dBm) = P_{TX} (dBm) + Gains (dB) – Losses (dB)

- Receiver needs a certain SINR to be able to decode the signal
- Factors reducing power budget:
 Noise, attenuation (multiple sources), longer range, fading
- Factors improving power budget:
 - Antenna gain, transmit power

LARGE-SCALE CHANNEL MODELS

Goal: Predict **average** received signal strength given a transmitter-receiver separation distance

Transmitting in Free Space

- Deliver P_t Watts to an omnidirectional transmitting antenna
- So then **power density** (Watts per unit area) at **range** d is $p = \frac{P_t}{4\pi d^2}$ W/m²
 - Independent of wavelength (frequency)

Idealized Receive Antenna

Effective aperture A_e: fraction of incident power density p captured and received

$$-A_e = \frac{\lambda^2}{4\pi}$$

• Larger antennas at greater λ capture more power

• So **power received** P_r is the product of the power density and effective aperture:

$$P_r = \frac{P_t \lambda^2}{(4\pi)^2 d^2}$$

Antenna Gain

- Antennas don't radiate power equally in all directions
 - Specific to the antenna design
- Model these gains in the directions of interest between transmitter, receiver:
 - Transmit antenna gain G_t
 - Receive antenna gain G_r

Friis Free Space Channel Model

• **Power received** P_r is the product of the power received by idealized antennas, times transmit and receive antenna gains:

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 d^2}$$

Ground Reflection (Two-Ray) Propagation Model

- Commonly occurs in mobile cellular environments
- Near transmitter: multipath oscillation due to constructive and destructive interference
- Far from transmitter ($d \gg h_t$, h_r), reflection always approximately out of phase with line of sight path: rapid attenuation

Today

- 1. Large scale channel models
- 2. Small-scale channel models
- 3. Equalization: Coping with the channel

Small-scale versus large-scale modeling

Small-scale models: Characterize the channel over at most a few wavelengths or a few seconds

Radio Propagation Mechanisms

- <u>Reflection</u>
 - Propagation wave impinges on object large compared to λ
 - e.g. the surface of the Earth, buildings, walls, etc.
- Diffraction
 - Path from transmitter to receiver obstructed by surface with sharp irregular edges
 - Waves bend around obstacle, even when LOS (line of sight) does not exist
- <u>Scattering</u>
 - Objects smaller than radio wavelength (i.e. foliage, street signs etc.)

Multipath Radio Propagation

- Receiver gets **multiple copies** of signal
 - Each copy follows different path, with different path length
 - Copies can either strengthen or weaken each other
 - Depends on whether they are in or out of phase
- Enables communication even when transmitter and receiver are not in "line of sight"
 - Allows radio waves effectively to propagate around obstacles, thereby increasing the radio coverage area
- Transmitter, receiver, or environment object **movement** on the order of λ significantly affects the outcome
 - *e.g.* 2.4 GHz → λ = 12 cm, 900 MHz → \approx 1 ft

Sinusoidal carrier, line of sight only

- Baseband transmitted signal: x(t) = 1 + 0j
 - Transmitted signal: $\cos(2\pi f_c t)$

- Represent path *attenuation a*, **length** *d* with a complex number:
 - Complex channel $h = ae^{j2\pi d/\lambda}$

$$a$$

 $2\pi(d \mod \lambda)$

• **Received signal:** $y(t) = h \cdot x(t)$ (no noise)

Adding a reflecting path

• Channel is now $h = h_1 + h_2 = a_1 e^{j2\pi d_1/\lambda} + a_2 e^{j2\pi d_2/\lambda}$

• **Conclusion:** At **different** λ , fading is **different** in frequency

Reflections cause frequency selectivity

 Interference between reflected and line-of-sight radio waves results in frequency dependent fading

Coherence bandwidth B_c: Frequency range over which the channel is roughly the same ("flat")

How does frequency selectivity arise? (Another look)

How does frequency selectivity arise? (Another look) the frequency selectivity come from??

Stationary transmitter, moving receiver

- Suppose reflecting wall, fixed transmit antenna, no other objects
 Receive antenna moving rightwards at velocity v
- Two arriving signals at receiver antenna with path length difference 2(d - r(t))

How does fading in time arise?

Channel Coherence Time

- Radio carrier frequency $f = c/\lambda$
 - Speed of light: c; Wavelength of the signal: λ
- Change in path length difference of $\lambda/2$ moves from constructive to destructive interference
 - Receiver movement of λ/4: coherence distance
 - Time transmitter, receiver, or objects in environment take to move a coherence distance: channel coherence time T_c
 - Walking speed (2 mph) @ 2.4 GHz: ≈ 15 milliseconds
 - Driving speed (20 mph) @ 1.9 GHz: ≈ 2.5 milliseconds
 - Train/freeway speed (75 mph) @ 1.9 GHz: < 1 millisecond

Another perspective: Doppler Effect

 Movement by the transmitter, receiver, or objects in the environment creates a *Doppler Shift*

Stationary transmitter, moving receiver: **From a Doppler Perspective**

- **Doppler Shift of a path** $\Delta f = \frac{f_c \cdot v_{radial}}{r}$
 - V_{radial} is the radial component of the receiver's velocity vector along the path
 - **Positive** Δf with decreasing path length, negative Δf with increasing path length
- Suppose v = 60 km/h, $f_c = 900$ MHz
 - Direct path $\Delta f = -50 Hz$, reflection path $\Delta f = +50 Hz$

Stationary transmitter, moving receiver: From a Doppler Perspective

- Channel Doppler Spread D_s: maximum path Doppler shift, minus minimum path Doppler shift
- Suppose v = 60 km/h, $f_c = 900$ MHz
 - Direct path $\Delta f = -50 Hz$, reflection path $\Delta f = +50 Hz$
 - Doppler Spread: 100 Hz
- Results in sinusoidal "envelope" at frequency D_s / 2:

Channel Coherence Time: From a Doppler Perspective

• Sinusoidal "envelope" at frequency $\frac{D_s}{2}$:

- Transition from 0 to peak in $\frac{1}{2D_s}$
 - So qualitatively significant change in time $T_c = \frac{1}{4D_c}$
 - Alternate definition of channel coherence time

What does the channel look like in time?

Power delay profile (PDP)

• **Power** received via the path with excess time delay τ_i is the value (height) of the discrete PDP component at τ_i

Characterizing a power delay profile

- Given a PDP $P(\tau_k)$ sampled at time steps τ_k :
- **Mean excess delay** $\overline{\tau}$: Expected value of $P(\tau_k)$:

$$\bar{\tau} = \frac{\sum_k P(\tau_k) \, \tau_k}{\sum_k P(\tau_k)}$$

- **Root mean squared (RMS) delay spread** σ_{τ} measures the spread of the power's arrival in time
 - RMS delay spread is the variance of $P(\tau_k)$:

$$\sigma_{\tau} = \sqrt{\overline{\tau^2} - (\overline{\tau})^2}$$
, where $\overline{\tau^2} = \frac{\sum_k P(\tau_k) \tau_k^2}{\sum_k P(\tau_k)}$

 Maximum excess delay < X dB is greater than X dB below the strongest arrival in the PDP

Example Indoor PDP Estimation

Typical RMS delay spreads

Environment	RMS delay spread
Indoor cell	10 – 50 ns
Satellite mobile	40 – 50 ns
Open area (rural)	< 0.2 μs
Suburban macrocell	< 1 µs
Urban macrocell	1 – 3 µs
Hilly macrocell	3 – 10 μs

Indoor power delay profile

Flat Fading

- Slow down → sending data over a narrow bandwidth channel
 - Channel is **constant** over its bandwidth ____
 - Multipath is still present, so channel strength fluctuates over time
 - How to model this fluctuation?

Not

above!

Rayleigh fading model

Transmitt

т0

Rayleigh fading example

Figure 5.15 A typical Rayleigh fading envelope at 900 MHz [from [Fun93] © IEEE].

Putting it all Together: Ray Tracing

- Approximate solutions to Maxwell's electromagnetic equations by instead representing wavefronts as particles, traveling along rays
 Apply geometric reflection, diffraction, scattering rules
 - - Compute angle of reflection, angle of diffraction
- Error is smallest when receiver is many λ from nearest scatterer, and all scatterers are large relative to λ
- Good match to empirical data in rural areas, along city streets (radios close to ground), and indoors
- **Completely site-specific**
 - Changes to site may invalidate model

Today

- 1. Large scale channel models
- 2. Small-scale channel models
- 3. Equalization: Coping with the channel

Problem: Inter-symbol interference (ISI)

- Transmitted signal
- Received signal with ISI

Problem: Inter-symbol interference (ISI)

- Transmitted signal
- Received signal with ISI
- ISI at one symbol depends on the value of other symbols

One Solution: Slow down

- Transmitted signal
- Received signal

Channel Model

$$f(t) = (p * h)(t) * h^*(-t)$$

• **Composite channel** (made up of pulse shape, radio channel, and matched filter)

Another Solution I: Zero-forcing Equalizer

Receiver

Preamble

Sequence of symbols known to both transmitter & receiver

Another Solution II: MSE Equalizer

 Goal: Minimizing mean-squared error (MSE) between received symbols & transmitted symbols

$$MSE = \sum_{k=0}^{K} |d_k - \widehat{d_k}|^2$$

Assumes Receiver has a preamble

Another Solution III: Decisionfeedback Equalizer

• Idea: Subtract the interference caused by already detected data (symbols)

Another Solution III: Decisionfeedback Equalizer

The forward filter w(t) here uses a linear equalizer
 – e.g., zero-forcing, MSE

The DFE has access to the symbol decisions

Thursday Topic: OFDM

Friday Precept: Lab 4: BPSK Radio