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Today

1. Receiver architecture
— Tradeoffs between ISI and Noise
— Common filter design: Raised Cosine

2. Bit error rate and Shannon Capacity



Review of Digital I/Q Modulation
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* Leverage analog communication channel to send discrete-valued symbols
— e.g. send symbol from {-3,-1,1,3} on both | and Q channels every symboal period

» Atreceiver, sample 1/Q waveforms every symbol period

— Associate each sampled I/Q value with symbol from set, on both | and
Q channels



Transmit and Recelve Filters
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Tools for Examining ISI

| and Q Eye Diagrams
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Impact of Receiver Noise

IN(2xf)|
(one trial)

| and Q Eye Dla rams

f

t 9

. —freal S @_l —(X) [z )

_I_. - dq(t) B Lowpass 2con2t 1) 2002(2th t)Lowpass
R 23'” 2nfot) @ é ! 25|n¢(2nf 1)

(t

P(2xf) |2 (:)—1 —>(:)—> H(i2rf) )

Lowpass Lowpass }
: _ . ' HG2rf)|
Receiver noise adds to desired I/Q : N WVOD VA
signals, causes corruption ; 7 t
Eye closes further Recehve Filer |

Constellation points spread

Key insight: Lowering the receive filter bandwidth
improves the rejection of background noise




Impact of Lower Receiver Filter Bandwidth

| and Q Eye Diagrams
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ISI Versus Noise
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Receive Filter
Selection of receive filter bandwidth involves a

tradeoff between ISI|, noise:
— Bandwidth too high: High Noise
— Bandwidth too low: High ISI
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Joint Transmit/Receive ISI Analysis
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« Both transmit and receive filters influence ISl
— Combined filter response: G(2mjf) = P(2njf) H(2njf)



Viewing Filtering in the Time Domain
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* Filtering operation corresponds to convolution in the time domain with
Impulse response

« Time domain view allows us to more clearly see impact of overall filter on ISI
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Impulse Response and ISI:

High Bandwidth

Receiver samples |/Q every symbol period

— Achieving zero ISI requires that each
symbol influence only one sample at the
combined filter output

Issue: Want lower overall filter bandwidth to
reduce spectrum bandwidth and lower noise

— But this causes smoothing of g(f)

N Sample
Times

Eye Diagram

A

W Sample
Times
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Impulse Response and ISI:
Low Bandwidth

Smoothed impulse response has a span
longer than one symbol period

— Convolution reveals that each symbol
impacts filter output at > 1 sample value -

* Inter-symbol interference occurs
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A More Direct View of the ISI Issue

« Consider impact of just one symbol Times

— Samples at filter output more clearly show
the impact of the one symbol on other
sample values
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The Nyquist Criterion for Zero ISI
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— Nyquist Criterion: Resulting samples Eye Diagram

must have only one non-zero value to
achieve zero |SI

« Can we design impulse response to span more '
than one symbol period and still meet the
Nyquist Criterion for Zero ISI?
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Raised Cosine Filter
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T
Raised cosine filter achieves low bandwidth and zero ISI

— Impulse response spans more than one symbol, but has
only one non-zero sample value
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— Impulse response: g(t) =
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Raised Cosine Filter: Roll-off factor

90 162

O -
0o

T
Parameter a (0 < a < 1) is referred to as the roll-off factor of the filter

— Smaller values of a lead to:
» Reduced filter bandwidth
* Increased duration of the filter impulse response

Regardless of a, the raised cosine filter achieves zero ISI
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Impact of Large a on Eye Diagram

« Large roll-off factor leads to nice, open eye
diagram

» Key observation: Achieving zero ISI
requires precise placement of sample
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times ‘
— Error in placement of sample times leads
to substantial ISI
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Impact of Small a on Eye Diagram

Small roll-off factor reduces the filter bandwidth N Times
and still allows zero ISI to be achieved

Issue: Greater sensitivity to sample time
placement than for large a

— Needs greater receiver complexity to
ensure precise sample time placement
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Transmitter and Receiver Filter Design

Receiver Output
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Raised Cosine Filter

» Overall response corresponds to

G(j2rnf) = P(j2rnf)H(j2rf)

— How to choose P and H?
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Matched Filter Design
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« Setting P(j2nf) = H(j2nf) yields a matched
filter design

— Each filter chosen to be a square-root raised
cosine filter
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Today

1. Receiver architecture
— Tradeoffs between ISI and Noise
— Common filter design: Raised Cosine

2. Bit error rate and Shannon Capacity
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Review of Digital Modulation

Baseband Input
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Transmitter sends discrete-value signals over analog communication channel

Receiver samples recovered baseband signal

— Noise and ISI corrupt received signal

Key techniques:

— Properly design transmit and receive filters for low ISI
— Sample and slice received signals to detect symbols
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A Closer Look at the Transmitter
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transmitted output
— Output power limited within a given spectral band

— Low output power desirable for portable
applications (battery life)
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A Constellation View of the Transmitter
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A Constellation View of Receiver
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Impact of SNR on Receiver Constellation
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* SNRis influenced by transmitte
receiver, and background noise
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Impact of Increased signal on

Constellation

Increase in received signal power

leads to increased separation

between symbols

— SNR improved if and when
noise level unchanged
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Quantifying the Impact of Noise

Distribution of noise: zero-mean Gaussian distribution

— Variance of noise determines the width of the Gaussian

Received
Peak

Amplltude\ O

Decision

Boundaries and

Probability Density
Function for Noise
(I-Component)

'\t/

Decision Boundaries
* Minimum separation between symbols: d_...
— Bit errors occur when noise moves a symbol by more than 2 d,

Probability Density
Function for Noise
(Q-Component)
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Impact of Reduced SNR

Probability Density
Function for Noise
(I-Component)
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Decision Boundaries

Lower SNR leads to reduced value for d,,;,

Leads to a higher bit error rate

— Assuming noise variance unchanged
— Assuming received signal power reduced
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Impact of Constellation Size Reduction
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Decision Boundary

Reducing the number of symbols leads to an increased value for dmin
Leads to a lower bit error rate
— Assuming signal power, noise variance constant
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Can we Estimate Bit Error Rate?
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Bit Error Rate depends on:
— SNR (ratio of received signal power to noise variance)
— Number of constellation points
« Sets d.,,, given a received signal power level



Let’s Start with a Detailed System View
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A Closer Examination of Signal and Noise
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Communication Channel
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The Binary Symmetric Channel Model
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* Provides a binary signaling model of channel
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Computation of SNR

Communication Channel for Q Channel
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Resulting Bit Error Rate Versus SNR

Communication Channel for Q Channel
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Shannon Capacity

Communication Channel
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Decision Boundary

* In 1948, Claude Shannon proved that:

— Digital communication can achieve arbitrarily-low bit error rates if
appropriate coding methods are employed

— The capacity, or maximum rate of a Gaussian channel with bandwidth
BW to support arbitrarily-low bit error rate communication is:

 C = BWlog,(1+ SNR) bits/second (SNR in linear scale units)
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Impact of Channel Bandwidth on Capacity

Communication Channel

Received
Peak

|| ||| ||| || # Amplltude\g

DeciSion oy .'
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------------------------------

C' = BW log,(1 + SNR) bits/second

A doubling of bandwidth allows twice the number of bits to be sentin time T
— Capacity (bits/second) increases linearly with bandwidth
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Impact of SNR on Capacity
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A higher SNR allows more bits to be sent per symbol
— Adding n bits requires adding 2" constellation points
» Therefore leads to d_,;,, being reduced by a factor of 2"
— High SNR (>> 1): Capacity increases linearly with SNR (dB, log scale)
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Constellation Design (Symbol Packing)
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Objective: Design constellation to maximize d,,,,, while packing as many
points in as possible

— Maximizing d,;, achieves lowest uncoded error rate

— Maximizing number of constellation points achieves highest uncoded data
rate (bits/second)
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Summary

« Constellation diagrams allow intuitive approach of quantifying
uncoded bit error rate of a channel

— Function of SNR and number of constellation points

 Adigital communication channel can be viewed in terms of a
binary signaling model

— Focuses attention on key issue of bit error rate

« Coding theoretically allows arbitrarily low bit error rate
performance of a practical digital communication link



Friday Precept:
Practical 802.11 PHY

Tuesday Topic:
The Wireless Channel
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