Receiver Design and Performance; Shannon Capacity

COS 463: Wireless Networks Lecture 13

Kyle Jamieson

[Parts adapted from H. Balakrishnan, M. Perrott, C. Terman]

Today

- 1. Receiver architecture
 - Tradeoffs between ISI and Noise
 - Common filter design: Raised Cosine
- 2. Bit error rate and Shannon Capacity

Review of Digital I/Q Modulation

- Leverage analog communication channel to send discrete-valued symbols
 e.g. send symbol from {-3,-1,1,3} on both I and Q channels every symbol period
- At receiver, **sample I/Q waveforms** every symbol period
 - Associate each sampled I/Q value with symbol from set, on both I and Q channels

Transmit and Receive Filters

- Last time: Transmit filter
 - Tradeoff between transmitted bandwidth and intersymbol interference (ISI)
- This time: Receive filter (previously assumed very wide bandwidth so as not to influence ISI)

Tools for Examining ISI

Impact of Receiver Noise

Impact of Lower Receiver Filter Bandwidth

ISI Versus Noise

– Bandwidth too low: High ISI

Joint Transmit/Receive ISI Analysis

- Both transmit and receive filters influence ISI
 - Combined filter response: $G(2\pi jf) = P(2\pi jf) H(2\pi jf)$

Viewing Filtering in the Time Domain

Filtering operation corresponds to convolution in the time domain with impulse response

Time domain view allows us to more clearly see impact of overall filter on ISI

Impulse Response and ISI: High Bandwidth

- Receiver samples I/Q every symbol period
 - Achieving zero ISI requires that each symbol influence only one sample at the combined filter output
- **Issue: Want lower overall filter bandwidth** to reduce spectrum bandwidth and lower noise
 - But this causes smoothing of g(t)

Impulse Response and ISI: Low Bandwidth

- Smoothed impulse response has a span longer than one symbol period
 - Convolution reveals that each symbol impacts filter output at > 1 sample value
 - Inter-symbol interference occurs

i_r(t)

A More Direct View of the ISI Issue

- Consider impact of just one symbol
 - Samples at filter output more clearly show the impact of the one symbol on other sample values

Times

The Nyquist Criterion for Zero ISI

- Sample the impulse response of the overall filter at the symbol period
 - Nyquist <u>Criterion</u>: Resulting samples must have only one non-zero value to achieve zero ISI
- Can we design impulse response to span more than one symbol period and still meet the Nyquist Criterion for Zero ISI?

Raised Cosine Filter

- Raised cosine filter achieves low bandwidth and zero ISI
 - Impulse response spans more than one symbol, but has only one non-zero sample value

- Impulse response:
$$g(t) = \frac{\sin(\pi t/T)}{\pi t/T} \frac{\cos(\alpha \pi t/T)}{1 - (2\alpha t/T)^2}$$

Raised Cosine Filter: Roll-off factor

- Parameter α ($0 \le \alpha \le 1$) is referred to as the *roll-off factor* of the filter
 - Smaller values of α lead to:
 - Reduced filter bandwidth
 - Increased duration of the filter impulse response
- Regardless of α, the raised cosine filter achieves zero ISI

Impact of Large α on Eye Diagram

- Large roll-off factor leads to nice, open eye diagram
- Key observation: Achieving zero ISI requires precise placement of sample times
 - Error in placement of sample times leads to substantial ISI

Sample

Times

i_r(t)

-3

Impact of Small α on Eye Diagram

- Small roll-off factor reduces the filter bandwidth and still allows zero ISI to be achieved
- Issue: Greater sensitivity to sample time placement than for large α
 - Needs greater receiver complexity to ensure precise sample time placement

i_r(t)

Sample

Times

-3

Transmitter and Receiver Filter Design

- Overall response corresponds to $G(j2\pi f) = P(j2\pi f)H(j2\pi f)$
 - How to choose P and H?

Matched Filter Design

- Setting $P(j2\pi f) = H(j2\pi f)$ yields a **matched filter** design
 - Each filter chosen to be a square-root raised cosine filter

Sample Times

Today

- 1. Receiver architecture
 - Tradeoffs between ISI and Noise
 - Common filter design: Raised Cosine

2. Bit error rate and Shannon Capacity

Review of Digital Modulation

- Transmitter sends discrete-value signals over analog communication channel
- Receiver samples recovered baseband signal
 - Noise and ISI corrupt received signal
- Key techniques:
 - Properly design transmit and receive filters for low ISI
 - Sample and slice received signals to detect symbols

A Closer Look at the Transmitter

- Amplitude of I/Q transmit signals impact power of transmitted output
 - Output power limited within a given spectral band
 - Low output power desirable for portable applications (battery life)

A Constellation View of the Transmitter

A Constellation View of Receiver

Impact of SNR on Receiver Constellation

SNR is influenced by transmitted power, distance between transmitter & receiver, and background noise

Impact of Increased signal on Constellation

Quantifying the Impact of Noise

- Distribution of noise: zero-mean Gaussian distribution
 - Variance of noise determines the width of the Gaussian

- Minimum separation between symbols: *d*_{min}
 - Bit errors occur when noise moves a symbol by more than ½ d_{min}

Impact of Reduced SNR

- Lower SNR leads to reduced value for d_{\min}
- Leads to a higher bit error rate
 - Assuming noise variance unchanged
 - Assuming received signal power reduced

Impact of Constellation Size Reduction

- Reducing the number of symbols leads to an increased value for dmin
- Leads to a lower bit error rate
 - Assuming signal power, noise variance constant

Can we Estimate Bit Error Rate?

- Bit Error Rate depends on:
 - SNR (ratio of received signal power to noise variance)
 - Number of constellation points
 - Sets d_{min}, given a received signal power level

Let's Start with a Detailed System View

• Assumptions: No ISI, four-point constellation

A Closer Examination of Signal and Noise

The Binary Symmetric Channel Model

• Provides a binary signaling model of channel

Computation of SNR

Resulting Bit Error Rate Versus SNR

Gaussian distribution of noise

Shannon Capacity

- In 1948, Claude Shannon proved that:
 - Digital communication can achieve arbitrarily-low bit error rates if appropriate coding methods are employed
 - The capacity, or maximum rate of a Gaussian channel with bandwidth BW to support arbitrarily-low bit error rate communication is:
 - $C = BW \log_2(1 + SNR)$ bits/second (SNR in **linear scale units**)

Impact of Channel Bandwidth on Capacity

- A doubling of bandwidth allows twice the number of bits to be sent in time T
 - Capacity (bits/second) increases linearly with bandwidth

Impact of SNR on Capacity

- A higher SNR allows more bits to be sent per symbol
 - Adding n bits requires adding 2ⁿ constellation points
 - Therefore leads to d_{\min} being reduced by a factor of 2^n
 - High SNR (>> 1): Capacity increases linearly with SNR (dB, log scale)

Constellation Design (Symbol Packing)

- **Objective:** Design constellation to maximize d_{min} while packing as many points in as possible
 - Maximizing d_{min} achieves lowest uncoded error rate
 - Maximizing number of constellation points achieves highest uncoded data rate (bits/second)

Summary

- Constellation diagrams allow intuitive approach of quantifying uncoded bit error rate of a channel
 - Function of SNR and number of constellation points

- A digital communication channel can be viewed in terms of a binary signaling model
 - Focuses attention on key issue of bit error rate

 Coding theoretically allows arbitrarily low bit error rate performance of a practical digital communication link Friday Precept: Practical 802.11 PHY

Tuesday Topic: The Wireless Channel