Preliminaries: Radio Communication, Modulation, and Filtering

COS 463: Wireless Networks Lecture 11 **Kyle Jamieson**

[Parts adapted from I. Darwazeh, H. Balakrishnan, M. Perrot, C. Sodini , P. Steenkiste]

Today

- Radio fundamentals
 - Radio Frequency (RF) Spectrum
 - Energy and Noise
- Introduction to Modulation
- Introduction to Filtering

Radio Frequency (RF)

- Electromagnetic signal that propagates through space
 - Transmitted at some carrier frequency f_c
 - Travels at the speed of light (c)
- Wavelength in air: $\lambda = c/f_c$
- f_c range: 3 KHz to >300 GHz (or, $\lambda = 100$ km to 1 mm)

Spectrum allocation in the US

Information Transmission

- Information (voice, video, data etc.)
- Coded in **signals** (electromagnetic, optical, acoustic)
- Transmitted over a channel (physical medium such as free space, fiber, wire etc.)

Key Tool: Fourier Series

- Motivation: x(t) is our information waveform
- A periodic waveform x(t) can be represented as a sum of weighted (a_n) sinusoids of different frequencies ω_n

Frequency Domain View

• **Plot** the weights a_n versus the frequencies ω_n :

Fourier Transform

- Fourier series deals with periodic signals
- Fourier transform deals with non-periodic signals
- Notation: $x(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f)$

Key Tool: The Impulse Function

• An **impulse** of area A at time t_0 is denoted:

Defined in terms of its properties when combined with other (information carrying) signals

Fourier Transform of cosine wave

Today

- Radio fundamentals
 - Radio Frequency (RF) Spectrum
 - Energy and Noise
- Introduction to Modulation and Demodulation
- Introduction to Filtering

Wireless Transmission

- Physical medium of wireless channel usually free space
- Radio wavelength *inversely* proportional to frequency (1 GHz → 30 cm, while 1 KHz → 30 km wavelength)
- Since antenna and component size is related to wavelength we want to move the information signal to a higher frequency for smaller devices

Sinusoidal carrier signal

- RF signal propagates away from transmitter at light speed c
- At an **instant in time:** signal "looks" sinusoidal **in space**
- At a point in space: signal oscillates sinusoidally in time

Goal of Modulation

Given an <mark>information signal</mark>

Example: Voice signal with 4 KHz bandwidth

Shift information signal to the *carrier frequency*

Example: 900 MHz carrier frequency

 \rightarrow Information signal **modulates** (changes) the carrier signal

Carrier signal parameters

The information signal modulates the carrier's parameters:

Goal of Demodulation

Given a transmitted signal, **Example:** Voice signal centered at 900 MHz

Recover the original signal from the transmission. Example: 4 KHz bandwidth voice signal centered at 0 Hz

Impulse: Sampling Property

• Multiplication of a function x(t) with an impulse at time t_0 :

Results in scaling the impulse by the value of x(t) at t₀

Impulse: Convolution Property

• Convolution of a **function x(t)** with an impulse at time t_0 :

Results in a time shift of x(t) by t₀

Impulse: Convolution in Frequency

• Convolve **function X(f)** with impulse at frequency f_0 :

Results in a frequency shift of X(f) by f₀

Duality of Convolution and Multiplication

• **Multiplication** in time leads to **convolution** in frequency:

$$x(t)y(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f) * Y(f)$$

• **Convolution** in time leads to **multiplication** in frequency:

$$x(t) * y(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(f)Y(f)$$

Principle of Modulation

- Given a cosine wave at frequency $f_1(1 \text{ Hz})$
- Modulate it with carrier at frequency f₂ (10 Hz) by multiplication

Time Domain and Frequency Domain Views of Modulation

Principle of Demodulation

- Receiver multiplies the modulated signal containing $f_1 f_2$ and $f_1 + f_2$ by **a copy of the carrier signal:** $cos(2\pi f_2 t)$
- Result contains original signal and higher frequency sinusoids:

Today

- Radio fundamentals
- Introduction to Modulation and Demodulation
- Introduction to Filtering

The Concept of Filtering

With input, filter produces output signal y(t) by convolution with a filter response h(t)

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

• So, in the frequency domain, the filter **multiplies** each input frequency f by $H(f) \leftrightarrow h(t)$

$$X(f) \longrightarrow H(f) \longrightarrow Y(f)$$

- Y(f) = X(f)H(f)

Example Input Signal to Filter

y(*t*)

• Input signal: Sum of three sinusoids (10, 50, 90 Hz)

Low Pass Filter Example

y(*t*)

• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

Low Pass Filter Output

• H(f) = 1 below 20 Hz, approaches 0 above 20 Hz

High Pass Filter Example

y(*t*)

• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

High Pass Filter Output

• H(f) = 0 below 70 Hz, approaches 1 above 70 Hz

Bandpass Filter: Motivation

- Want to receive exclusively a certain frequency band of interest
 - In presence of other communication on **adjacent channels**

Bandpass Filter Output

• H(f) = 0 below 30 Hz, above 70 Hz, approaches 1 elsewhere

Today

- Radio fundamentals
- Introduction to Modulation and Demodulation
 - AM Radio
 - Performance metrics
- Introduction to Filtering

AM Radio Transmitter

Demodulation: Frequency Domain View

Demodulation: Time Domain View

Impact of a frequency offset

Frequency offset ε at receiver corrupts the output signal *r*(*t*)

Today

- Radio fundamentals

 Radio Frequency (RF) Spectrum
 Energy and Noise
- Introduction to Modulation
- Introduction to Filtering

The Issue of Noise

- Noise: Unpredictable, corrupting signal that adds to desired signal
 - For RF receiver, mostly comes from analog receiver amplifier circuitry
- Undesired signals also add to and corrupt desired signal

Energy Transfer in Wireless Communication

- Receiver antenna captures a limited amount of desired signal's energy
 - Depending on antenna size, distance, environment

Signal versus Noise

- Moving transmitter closer to receiver generally increases desired signal energy
- Noise from analog receiver circuitry remains unchanged
- **Next few lectures**: *How is system performance impacted?*

Today

- Radio fundamentals
- Introduction to Modulation and Demodulation
 - AM Radio
 - Performance metrics
- Introduction to Filtering

Definition of Power, Energy

- Given a signal x[n]:
- **Energy** $E_x = \sum_{k=0}^{N-1} (x[k])^2$
- **Power** $P_x = \frac{1}{N} \sum_{k=0}^{N-1} (x[k])^2$

SNR Example

Signal to Noise Ratio (SNR)

 The Signal-to-Noise ratio (SNR) is useful in judging the impact of noise on system performance

$$SNR = \frac{P_{signal}}{P_{noise}}$$

 SNR is often measured in decibels (dB):

$$SNR(dB) = 10\log_{10}\left(\frac{P_{signal}}{P_{noise}}\right)$$

10logX	Х
100	1000000000
90	100000000
80	10000000
70	1000000
60	1000000
50	100000
40	10000
30	1000
20	100
10	10
0	1
-10	0.1
-20	0.01
-30	0.001
-40	0.0001
-50	0.000001
-60	0.0000001
-70	0.0000001
-80	0.00000001
-90	0.000000001
-100	0.0000000001

Noise Characterization: From Samples to Histogram

- Experiment: create histograms of sample values from signals of increasing lengths
- Typically converge to a shape calle d probability density function (PDF)

Visualizing Mean and Variance

Summary

- Impulse function is an important concept for frequency domain "picture" analysis
 - Shifting, sampling properties of impulse explain modulation and demodulation

- "Picture analysis" of modulation and filtering
 - Modulation *shifts* in frequency (convolution with impulses)
 - Filtering multiplies in frequency

Thursday: In-Class Midterm (90 minutes)