Rateless Codes

COS 463: Wireless Networks
Lecture 10
Kyle Jamieson

Today

1. Rateless fountain codes
— Luby Transform (LT) Encoding
— LT Decoding

2. Rateless Spinal codes

Fixed-rate codes require channel adaptation

° BPSK (1 megabit/s) m——
QPSK (2 megabit/s) =
St QAM-16 (4 megabits/g) -
QAM-64 (6 megabits/s) mmmmmum
4+ e S y

Throughput (Megabits per Second)
w

Existing rate adaptation algorithms

SNR/BER-based

ACK SNR using preamble

Estimate frame loss rate Lookup table:
at each bit rate SNR/BER - best rate

Rateless codes: Motivation (1)

Sender transmits information at a rate higher than the
channel can sustain

— At first glance, this sounds disastrous!

Receiver extracts information at the rate the channel can
sustain at that instant

— No adaptation loop is needed!

Rateless codes: Motivation (2)

« Sender sends a potentially limitless stream of encoded bits

* Receiver(s) collect bits until they are reasonably sure that

they can recover the content from the received bits, then
send STOP feedback to sender

- Automatic adaptation: Receivers with larger loss rate
need longer to receive the required information

LT encoding

* Consider a message m with K bits

* LT encoding produces N coded bits, for any N
— Variable code rate: K/N

« To produce the nth coded bit:

— Choose at random the coded bit's degree d,, from a
degree distribution

— Choose d,, distinct message bits, uniformly at random
» Xor them together to form one coded bit c,,

LT encoding

Message bits: Coded bits:
¢y =my @ ms
" C,=ms; D my
Mz C3 = M,
ms c,=m, D m,
M C5 = Mg
M cg = m,; @ my
Me C7=Mg
my Cs=my;P m,H m,
mg Co=ms D m,

Cio = Mg

LT decoding algorithm

1. Find a coded bit ¢, with degree one
— If not possible, fail

2. Decide its incident message biti: m;=c,,
3. Add m, (with xor) to all coded bits ¢, incident on m,
4. Remove all edges incident on m,

5. Repeat Steps 1 to 4 until all m; are found

LT decoding example

1

Co

=0

1

C1

o 1

Co

=0

it

10

LT decoding example

11

LT decoding example

12

LT decoding example

) @ @

13

Today

1. Rateless fountain codes
— Luby Transform (LT) Encoding
— LT Decoding

2. Rateless Spinal codes
— Encoding Spinal Codes
— Decoding Spinal codes
— Performance evaluation

14

Spinal encoder: Computing the spines

Message M
1

k+1 2k+1

iy (k bits) iy (k bits) i3 (k bits)

v Y v

» Start with a hash function h and an initial random v-bit stafe s,
— Sender and receiver agree on h and s, a prion

» Sender divides its n-bit message M into k-bit chunks m,

* h maps the state and a message chunk into a new state
— The v-bit states s, ..., s/, /are the spines

Spinal encoder: Information flow

Message M
1

k+1 2k+1

m (k bits) my (k bits) m3 (k bits)

7 \ *

So —»| ,‘® 1} :@—> h >@—>

» Observe: State s; contains information about chunks my, ..., m,

/

— Astage’s state depends on the message bits up to that stage

« So only state s/, /has information about entire message

Spinal encoder: Computing the
spines

Message M
1 k+1 2k +1
m (k bits) my (k bits) m3 (k bits)
RNG RNG RNG
Pass 1 21,1 x2,1 T3,1
Pass 2 21,2 2.2 3,2
Pass 3 21,3 2,3 £3,3

« Each spine seeds a random number generator RNG
 RNG generates a sequence of c-bit numbers

» Encoder output is a series of passes of In/kl symbols x;, each

Spinal encoder: RNG to symbols

» A constellation mapping function translates c-bit numbers x;,
from the RNG to in-phase (I) and quadrature (Q) ’

— Generates in-phase (It) and quadrature (Q) components
independently from two separate x;,

Uniform Truncated Gaussian

Q

18

Today

1. Rateless fountain codes
— Luby Transform (LT) Encoding
— LT Decoding

2. Rateless Spinal codes
— Encoding Spinal Codes
— Decoding Spinal codes
— “Maximume-likelihood” decoding
— The Bubble Decoder
— Puncturing for higher rate
— Performance evaluation

19

Decode by replaying the encoder

Sender transmits “1”, “0”:

1
v
h

s h—~> ¢t —

0
v
h

—>

*

&

Transmitted
symbols

Instead of inverting the hash function, the

decoder replays all four possibilities:

0 0

\ 4 A 4

So—>h—> o—1h— o
! X
1
\
So 2Lh— o—h—
“’ ‘x"
X

> € O

S~

€ O

>€ -

=

Decode by measuring distance

How to decide between the four possible messages?

Measure total distance between:
— Received symbols, corrupted by noise (X), and
— Replayed symbols (o)

Sum across stages: the distance increases at first incorrect symbol

0) 0 1 0
v v v v
h h h h

BE 3NE S Sl &
s Tk S S

1 o Replayed symbol]
! X Received symbol ! 21

J
!

y
Sk
l

>@|
!
Sk —

Adding additional passes

Message M

1 k+1 2k +1
iy (k bits) iy (k bits) i3 (k bits)

so —>| h h h
RNG RNG RNG
|:> Pass 1 1.1 21 3.1
I::} Pass 2 19 29 x3,2
|:> Pass 3 I1.3 L2 3 3.3

* Recall: The encoder sends multiple passes over the
same message blocks

Adding additional passes

« What's a reasonable strategy for decoding now?

» Take the gverage djstance from the replayed symbol (o),
across all received sym%ols (X, X) played sy ()

— lntuﬁjon: As number of passes increases, noise and bursts of
Interterence average out and impact the metric less

> € O
€ O

>
> € O

So N[e N s, > h—>1 —lh—

0
v
h

> =
>l

S>€ -

So 2Nt N s, =>h—t — h—
R ‘& i ‘5(£|

X Received symbol | 23

The Maximum Likelihood (ML)
decoder

« Consider all 2" possible messages that could have been sent
— The ML decoder minimizes probability of error

* Pick the message M’ that minimizes the vector distance between:
— The vector of all received constellation points y

— TFA% vector of constellation points sent if W were the message,
X

=arg min H
M'E{0,1}"

* In further detail:
1. x; (M) " constellation point sent in the ' pass for M’
2.y, th constellation point received in the ™ pass

M =arg min E ., —xm(M’)2

M'e{0,1
t }allt,l

24

ML decoding over a tree

* Observe: Hypotheses whose initial stages share the same

symbol guesses are identical in those stages

O > — 3K
Tl = +-.m--.m
A
I > < — > !
T T

25

ML decoding over a tree

« QObserve: Hypotheses whose initial stages share the same
symbol guesses are identical in those stages

* Therefore we can merge these initial identical stages:

26

ML decoding over a tree

General tree properties:
— n/k levels, one per spine

— Branching factor 2% (per choice
of k-bit message chunk) S oy -5 (51 =)

€ O

sl

 Let s’, be the " spine value
associated with all messages
that share s/,

So

* We find cost of a particular
message by summing costs on
path from root to leaf

4_&

ML decoding over a tree: Multiple
passes

» Suppose the sender transmits L
passes, in a poor channel 0

3
E‘yl,l =Xy (S1’ = O)‘z
=1

* Average (sum) metric across
passes, and label branches So

T
;}‘yu =Xy (Sll = 1)‘2 7

 However, the tree has 2" leaves
to compare so this approach is
still impracticable (too
computationally demanding)

Efficiently exploring the tree

* Observation: Suppose the ML message M*and some
other message M differ only in the " bit

— Only symbols including and after index !i’/k! will disagree
— So the earlier the error in M, the larger the cost

— Can show that the “runners-up” to M* differ only in the
last O(log n) bits

 Consider the best 100 leaves in the ML tree:

— Tracing back through the tree, they will have a common
ancestor with M* in O(log n) steps

— This suggests a strategy in which we only keep a
limited number of ancestors

29

Bubble decoder

« Maintain a beam of B tree node ancestors to explore, each
to a certain depth d

» Expand each ancestor, score every child, propagate best
child score for each ancestor, pick B best survivors

beam

Example: B =d = 2, k=1 (lighter color = better score)

(a) After stepi— 1

(b) Expand

30

Decoding complexity

* The bubble decoder operates in n/k — d steps
— Each step explores B-2? nodes, evaluating the RNG L times
— Selecting the best B candidates takes B-2X comparisons

* Overall cost: O((n/k)BL-2%%) hashes, O((n/k)B-2%) comparisons

« Comparison with LDPC belief propagation algorithms
— These operate in iterations, too, involve all message bits
— But, these are also quite parallelizable
— Hard to give exact head-to-head comparison

Adjusting the rate

« Spinal codes as described so far uses different numbers of
passes to adjust the rate

« Two problems in Spinal codes as described so far:

1. Must transmit one full pass, so max out at k bits/symbol
* Increase k? No: Decoding cost is exponential in k

1. Sending L passes reduces rate to k/L—abrupt drop
* |ntroduces plateaus in the rate versus SNR curve

32

Puncturing for higher and finer-
controlled rates

 Idea: Systematically skip some spines
— Sender and receiver agree on the pattern beforehand
— Receiver can now attempt a decode before a pass concludes

« Decoder algorithm unchanged, missing symbols get zero score

« Max rate of this puncturing: 8-k bits/symbol

8 16 24 32
subpass 1

subpass 2
subpass 3
subpass 4
subpass
subpass 7
subpass

33

Framing at the link layer

Sender and receiver need to maintain synchronization

— Sender uses a short sequence number protected by a
highly redundant code

Unusual property of Spinal codes: Shorter message length
n is more efficient

— This is in opposition to the trend most codes follow

— Divide the link-layer frame into shorter checksum-
protected code blocks

* If half-duplex radio, when should sender wait for feedback?
— For more information, see RateMore (MobiCom ‘12)

Today

1. Rateless fountain codes
— Luby Transform (LT) Encoding
— LT Decoding

2. Rateless Spinal codes
— Encoding Spinal Codes
— Decoding Spinal codes
— Performance evaluation

35

Methodology

« Software simulation: Simulated wireless channel (additive white
Gaussian noise and Rayleigh fading)

« Hardware platform: Airblue (FPGA based platform)
— Real 10, 20 MHz bandwidth channels in 2.4 GHz ISM band

Shannon bound;

« Gap to capacity: How much more = 8

noise could a capacity-achieving 3 """"""""""" """"""""""" """"""""" '
code tolerate at same rate? % 6 D g S
— Smaller gap is better T 5 S S &
Q g ol s d e s s ek
o i

— e.g.: This code achievessix & =~
bits/symbol at 20 dB SNR, @ 2
fora2 dB gap to capacity § e N

O liO 1i5 2|O 2i5

SNR (dB)

Spinal codes: Higher rate on AWGN
channel

9 | | | | | | ’
— Spinal, n = 256, k=4, B = 256 Shannon bound : ohe
8 - - Spinal, n = 1024, k=4, B=256] "~ p B U i §
2| =+~ Strider, n = 50490 i P SO S 1
~ || = Strider+, n = 50490 : A e
: L 7 7 & :
é 6 H —-- LDPCenvelope }-------- SRS ',’-------{;,a"-.’ -------- ERREEEEEEEEE =
> = Raptor, n = 9500 : z7 . "
oY) L S — N (RN S AN S S
= : : ; iy < .
) ; ; o A Do
2 . . ," ‘,“;'._._'._._._._.:_.
Bl R RRRREEE et g £ s R e SRR .
= 5 5 7Tl
] e e 1
~ . . >
. . 7 o]
2 AR ; ',;fy\"& Rl 1
: ‘.a‘
1 - T -
g ‘,,');_':
0 S I I I I I I
-5 0 5 10 15 20 25 30 35
SNR (dB)

« Simulated AWGN channel: no link-layer performance effects here

« LDPC envelope: Choose best-performing rated LDPC code at each SNR to
m?mic t%evbes arate adaptationpstrategy %oulg do

« Strider+: Strider + puncturing: finer rate control, but significant gap to capacity

37

Rateless codes can “hedge their

bets”
Constant SNR means constant
average noise power
— But, noise impacting any
Bart!cular sy{mbol(gs) may
e higher or lower

Rated codes must be risk
averse (send at lower rate)

Rateless codes can decode
with fewer symbols when
noise is momentarily lower

rate (bits per symbol)

But this result requires
erfect and instantaneous
eedback so the rateless

code knows when to stop

5

4

0

m== Shannon bound
—— Spinal, rateless
...... Spinal, fixed rate

N

~ ~ i ~
- ~

~ & & N
~ Y ~ g

SNR (dB)

38

Spinal codes: Better at sending short
messages

gap to capacity (dB)

-6 _
-5 0 5 10 15 20 25 30 35
SNR (dB)

. Loq‘ger code block means more opportunities to prune correct

—SoS inal codes achi esb ormance (smaller aa
toca Iaclty with sma Iﬁ\ér cO grocﬁr[eng% (J9ap

« \We can see artifacts due to puncturing at higher SNRs

39

Spinal Codes: Conclusion

Spinal Codes give performance close to Shannon
capacity

Eliminate the need to run a bit rate adaptation algorithm
Simpler design and better performance

Link layer design more open, incurs overhead between
transmissions

40

Midterm format

* Timing: 60 minutes in a 90 minute timeslot

1. True/False/Don’t Know questions
— One point for a correct T/F response
— No effect for a don’'t know response or no response
— Minus one point for an incorrect T/F response

— Rescaled as a section with a zero floor

2. Short answer questions
— One to two, each on a theme

Friday Precept:
Midterm Review

Tuesday Topic:
Signals and Systems Preliminaries

Next Thursday:
In-Class Midterm

42

