Rateless Codes

COS 463: Wireless Networks
Lecture 10
Kyle Jamieson

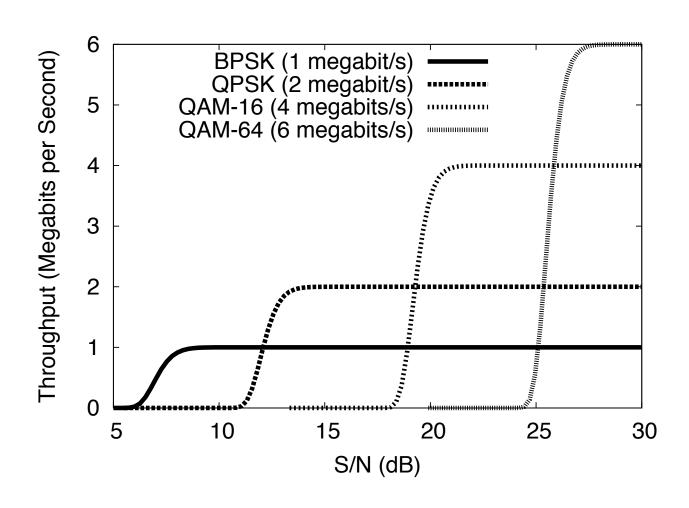
Today

1. Rateless fountain codes

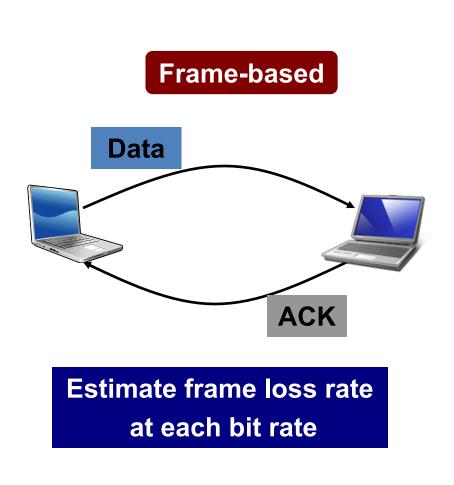
- Luby Transform (LT) Encoding
- LT Decoding

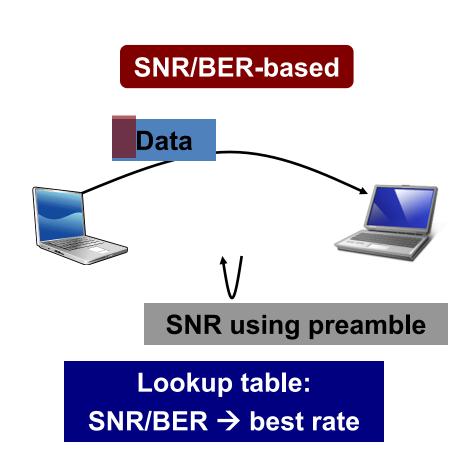
2. Rateless Spinal codes

Fixed-rate codes require channel adaptation



Existing rate adaptation algorithms





Rateless codes: Motivation (1)

- Sender transmits information at a rate higher than the channel can sustain
 - At first glance, this sounds disastrous!
- Receiver extracts information at the rate the channel can sustain at that instant
 - No adaptation loop is needed!

Rateless codes: Motivation (2)

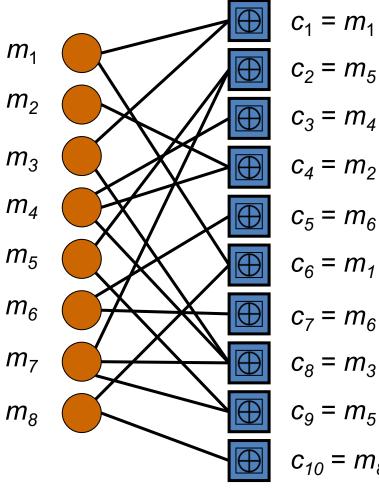
- Sender sends a potentially limitless stream of encoded bits
- Receiver(s) collect bits until they are reasonably sure that they can recover the content from the received bits, then send STOP feedback to sender
- Automatic adaptation: Receivers with larger loss rate need longer to receive the required information

LT encoding

- Consider a message m with K bits
- LT encoding produces N coded bits, for any N
 - Variable code rate: K / N
- To produce the nth coded bit:
 - Choose at random the coded bit's degree d_n from a degree distribution
 - Choose d_n distinct message bits, uniformly at random
 - Xor them together to form one coded bit c_n

LT encoding

Message bits:



Coded bits:

$$c_1 = m_1 \oplus m_3$$

$$c_2 = m_5 \oplus m_7$$

$$c_3 = m_4$$

$$c_4 = m_2 \oplus m_4$$

$$c_5 = m_6$$

$$c_6 = m_1 \oplus m_8$$

$$c_7 = m_6$$

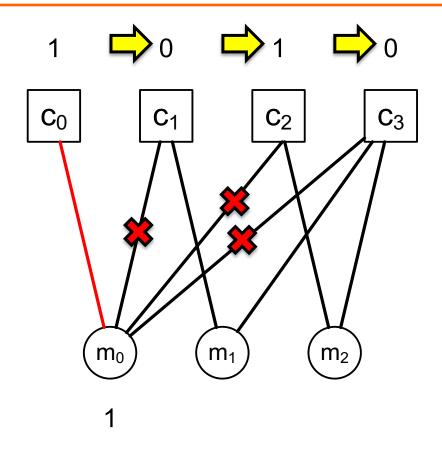
$$c_8 = m_3 \oplus m_4 \oplus m_7$$

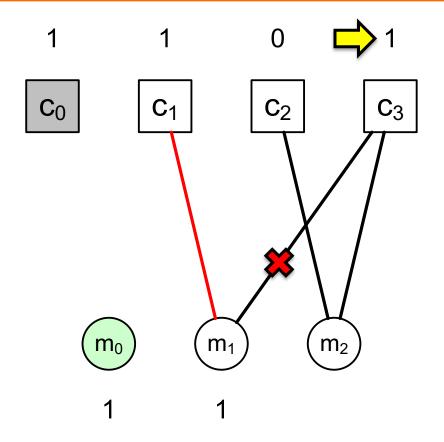
$$c_9 = m_5 \oplus m_7$$

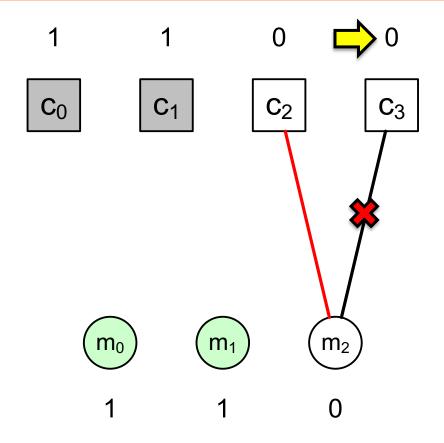
$$c_{10} = m_8$$

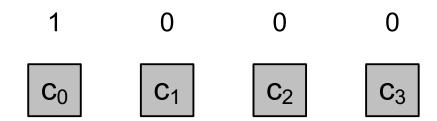
LT decoding algorithm

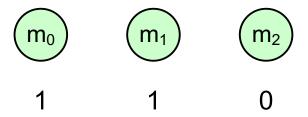
- 1. Find a coded bit c_n with degree one
 - If not possible, fail
- 2. Decide its **incident** message bit *i*: $m_i = c_n$
- 3. Add m_i (with xor) to all coded bits c_n incident on m_i
- 4. Remove all edges incident on m_i
- 5. Repeat Steps 1 to 4 until all m_i are found







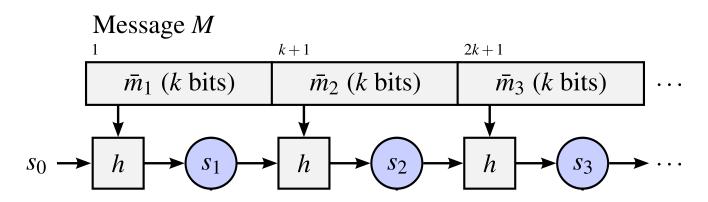




Today

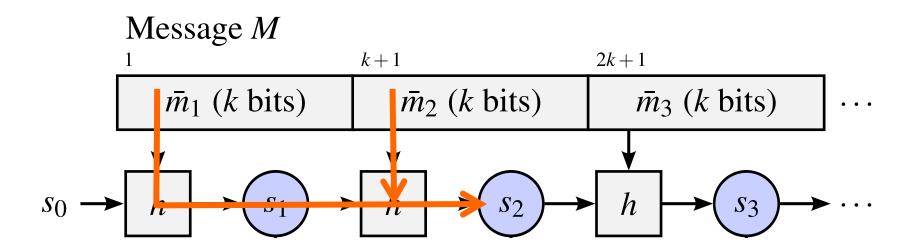
- 1. Rateless fountain codes
 - Luby Transform (LT) Encoding
 - LT Decoding
- 2. Rateless Spinal codes
 - Encoding Spinal Codes
 - Decoding Spinal codes
 - Performance evaluation

Spinal encoder: Computing the spines



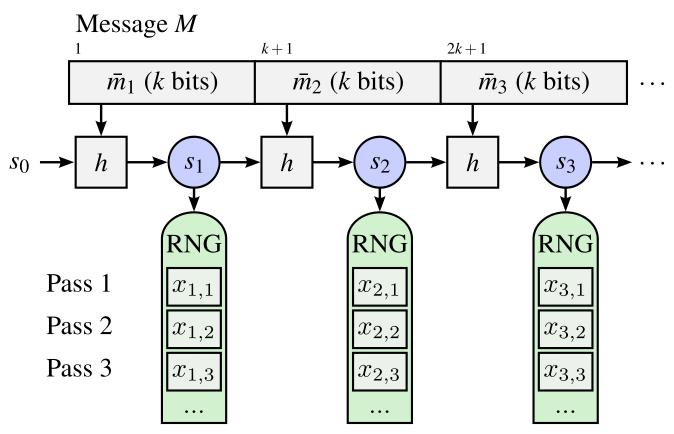
- Start with a hash function h and an initial random v-bit **state** s_0
 - Sender and receiver agree on h and s₀ a priori
- Sender divides its n-bit message M into k-bit chunks m_i
- h maps the state and a message chunk into a new state
 - The *v*-bit states $s_1, ..., s_{n/k}$ are the **spines**

Spinal encoder: Information flow



- Observe: State s_i contains information about chunks m_1, \ldots, m_i
 - A stage's state depends on the message bits up to that stage
- So only state $s/_{n/k}$ has information about entire message

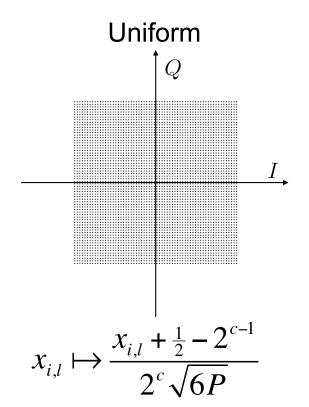
Spinal encoder: Computing the spines



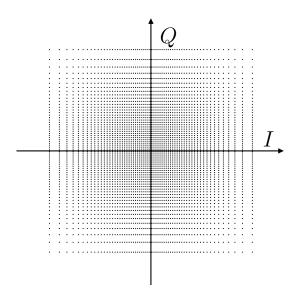
- Each spine seeds a random number generator RNG
- RNG generates a sequence of c-bit numbers
- Encoder output is a series of passes of [n/k] symbols x_{i,l} each

Spinal encoder: RNG to symbols

- A constellation mapping function translates c-bit numbers x_{i,I} from the RNG to in-phase (I) and quadrature (Q)
 - Generates in-phase (I) and quadrature (Q) components independently from two separate $x_{i,l}$



Truncated Gaussian



Today

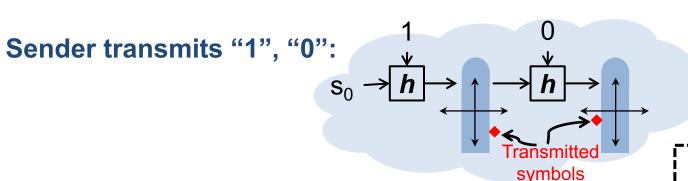
1. Rateless fountain codes

- Luby Transform (LT) Encoding
- LT Decoding

2. Rateless Spinal codes

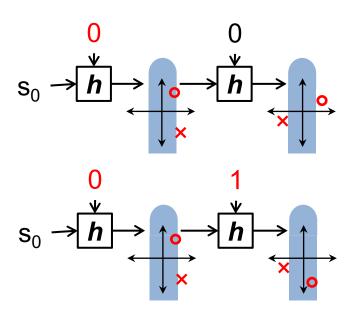
- Encoding Spinal Codes
- Decoding Spinal codes
 - "Maximum-likelihood" decoding
 - The Bubble Decoder
 - Puncturing for higher rate
- Performance evaluation

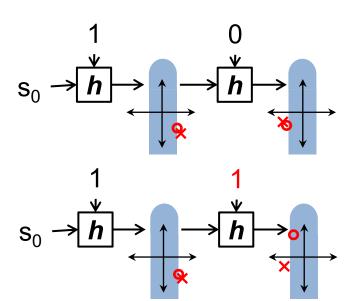
Decode by replaying the encoder



- Replayed symbol
- × Received symbol

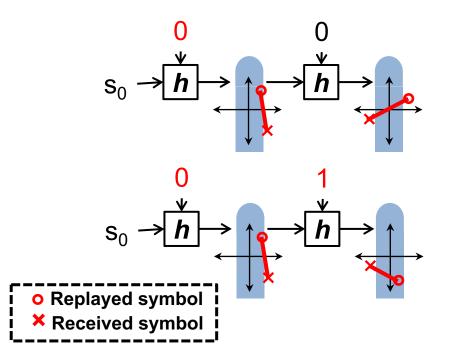
Instead of inverting the hash function, the decoder *replays* all four possibilities:

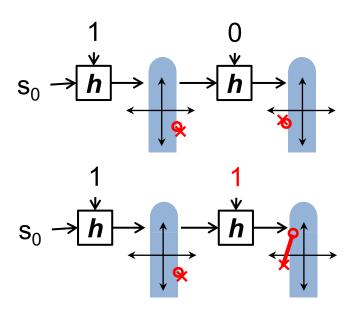




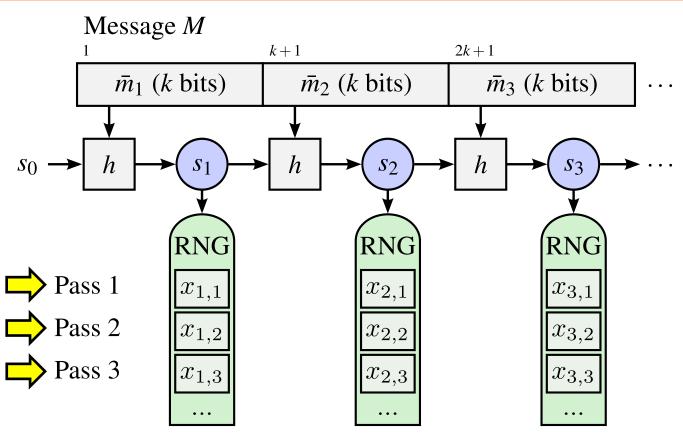
Decode by measuring distance

- How to decide between the four possible messages?
- Measure total distance between:
 - Received symbols, corrupted by noise (×), and
 - Replayed symbols (o)
- Sum across stages: the distance increases at first incorrect symbol





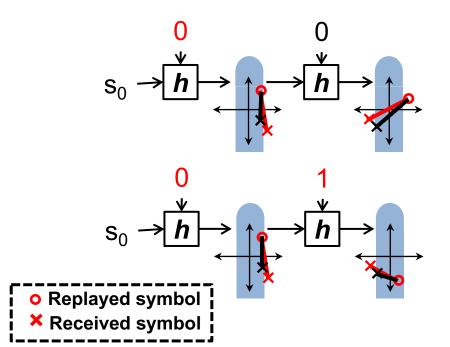
Adding additional passes

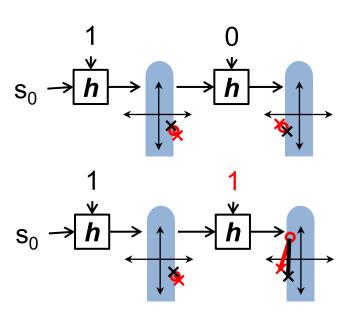


 Recall: The encoder sends multiple passes over the same message blocks

Adding additional passes

- What's a reasonable strategy for decoding now?
- Take the average distance from the replayed symbol (o), across all received symbols (×, ×)
 - Intuition: As number of passes increases, noise and bursts of interference average out and impact the metric less





The Maximum Likelihood (ML) decoder

- Consider all 2ⁿ possible messages that could have been sent
 - The ML decoder minimizes probability of error
- Pick the message M' that minimizes the vector distance between:
 - The vector of all received constellation points y
 - The vector of constellation points sent if M were the message, $\mathbf{x}(M)$

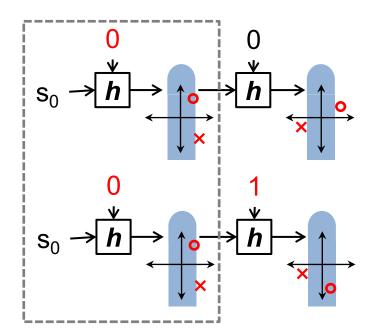
$$\hat{M} = \arg\min_{M' \in \{0,1\}^n} \left\| \mathbf{y} - \mathbf{x} (M') \right\|^2$$

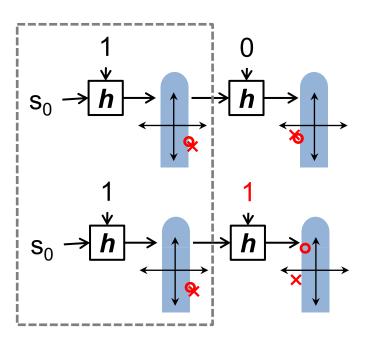
- In further detail:
 - 1. $x_{t,l}(M')$: t^{th} constellation point **sent** in the l^{th} pass for M'
 - 2. $y_{t,l}$: t^{th} constellation point **received** in the t^{th} pass

$$\hat{M} = \arg\min_{M' \in \{0,1\}^n} \sum_{\text{all } t, l} |y_{t,l} - x_{t,l}(M')|^2$$

ML decoding over a tree

 Observe: Hypotheses whose initial stages share the same symbol guesses are identical in those stages

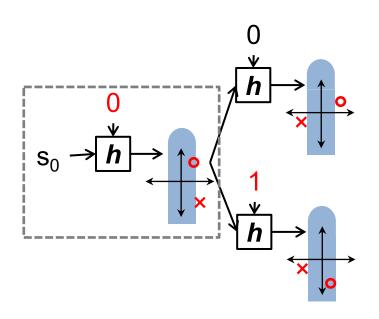


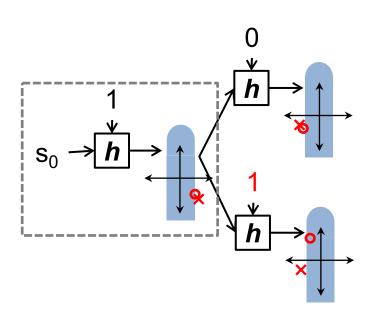


ML decoding over a tree

 Observe: Hypotheses whose initial stages share the same symbol guesses are identical in those stages

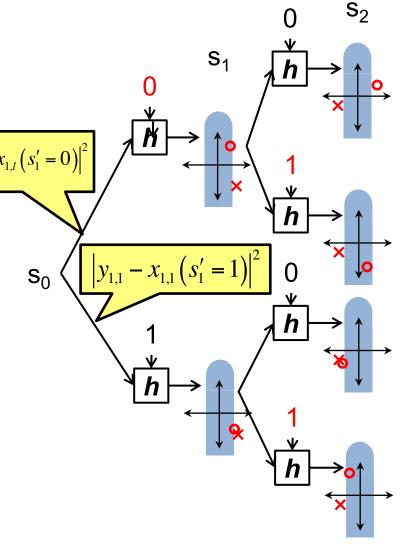
Therefore we can merge these initial identical stages:





ML decoding over a tree

- General tree properties:
 - n/k levels, one per spine
 - Branching factor 2^k (per choice of k-bit message chunk)
- Let s'_t be the tth spine value associated with all messages that share s'_t
- We find cost of a particular message by summing costs on path from root to leaf

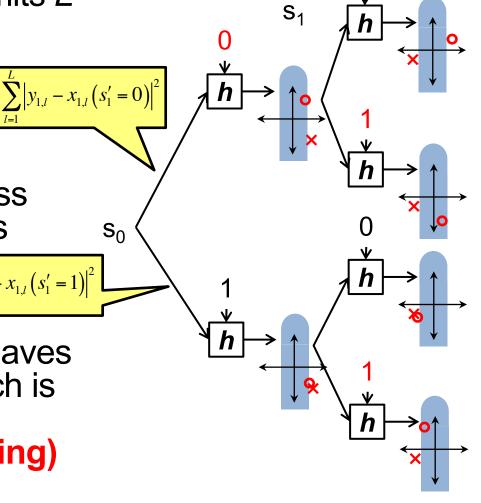


ML decoding over a tree: Multiple passes

Suppose the sender transmits *L* passes, in a poor channel

 Average (sum) metric across passes, and label branches

However, the tree has 2ⁿ leaves to compare so this approach is still impracticable (too computationally demanding)



 S_0

 $\left| y_{1,l} - x_{1,l} \left(s_1' = 1 \right) \right|^2$

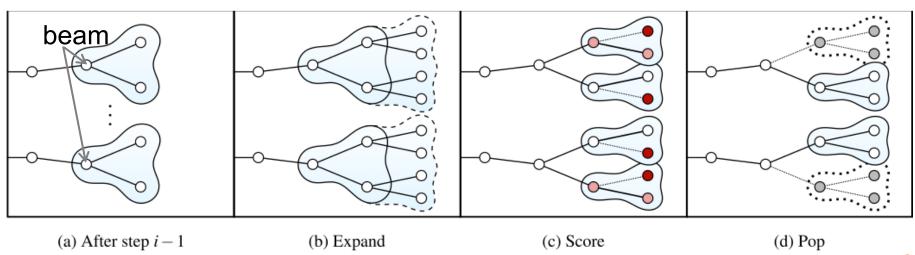
 S_2

Efficiently exploring the tree

- Observation: Suppose the ML message M* and some other message M' differ only in the ith bit
 - Only symbols including and after index | i|k| will disagree
 - So the earlier the error in M', the larger the cost
 - Can show that the "runners-up" to M* differ only in the last O(log n) bits
- Consider the best 100 leaves in the ML tree:
 - Tracing back through the tree, they will have a common ancestor with M* in O(log n) steps
 - This suggests a strategy in which we only keep a limited number of ancestors

Bubble decoder

- Maintain a beam of B tree node ancestors to explore, each to a certain depth d
- Expand each ancestor, score every child, propagate best child score for each ancestor, pick B best survivors
- Example: B = d = 2, k = 1 (lighter color = better score)



30

Decoding complexity

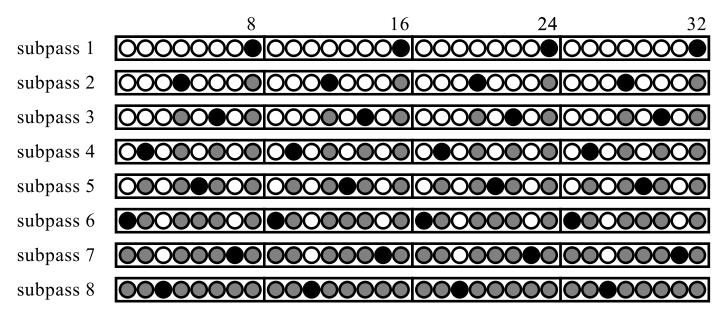
- The bubble decoder operates in n/k d steps
 - Each step explores B·2^{kd} nodes, evaluating the RNG L times
 - Selecting the best B candidates takes $B \cdot 2^k$ comparisons
- Overall cost: $O((n/k)BL\cdot 2^{kd})$ hashes, $O((n/k)B\cdot 2^k)$ comparisons
- Comparison with LDPC belief propagation algorithms
 - These operate in iterations, too, involve all message bits
 - But, these are also quite parallelizable
 - Hard to give exact head-to-head comparison

Adjusting the rate

- Spinal codes as described so far uses different numbers of passes to adjust the rate
- Two problems in Spinal codes as described so far:
 - 1. Must transmit one full pass, so max out at *k* bits/symbol
 - Increase k? No: Decoding cost is exponential in k
 - 1. Sending *L* passes reduces rate to *k/L*—abrupt drop
 - Introduces plateaus in the rate versus SNR curve

Puncturing for higher and finercontrolled rates

- Idea: Systematically skip some spines
 - Sender and receiver agree on the pattern beforehand
 - Receiver can now attempt a decode before a pass concludes
- Decoder algorithm unchanged, missing symbols get zero score
- Max rate of this puncturing: 8-k bits/symbol



Framing at the link layer

- Sender and receiver need to maintain synchronization
 - Sender uses a short sequence number protected by a highly redundant code
- Unusual property of Spinal codes: Shorter message length n is more efficient
 - This is in opposition to the trend most codes follow
 - Divide the link-layer frame into shorter checksumprotected code blocks
- If half-duplex radio, when should sender wait for feedback?
 - For more information, see RateMore (MobiCom '12)

Today

1. Rateless *fountain* codes

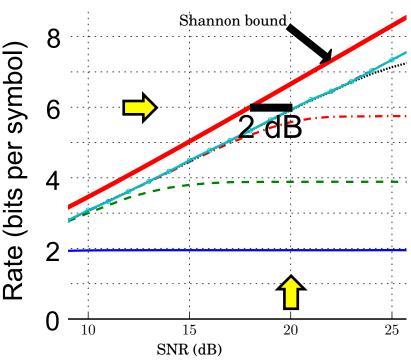
- Luby Transform (LT) Encoding
- LT Decoding

2. Rateless Spinal codes

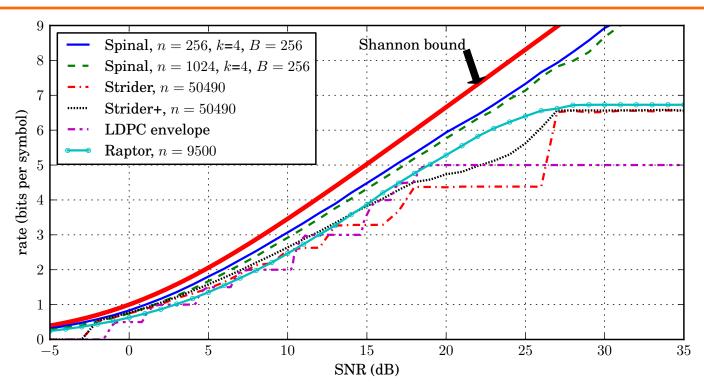
- Encoding Spinal Codes
- Decoding Spinal codes
- Performance evaluation

Methodology

- Software simulation: Simulated wireless channel (additive white Gaussian noise and Rayleigh fading)
- Hardware platform: Airblue (FPGA based platform)
 - Real 10, 20 MHz bandwidth channels in 2.4 GHz ISM band
 - Gap to capacity: How much more noise could a capacity-achieving code tolerate at same rate?
 - Smaller gap is better
 - e.g.: This code achieves six bits/symbol at 20 dB SNR, for a 2 dB gap to capacity



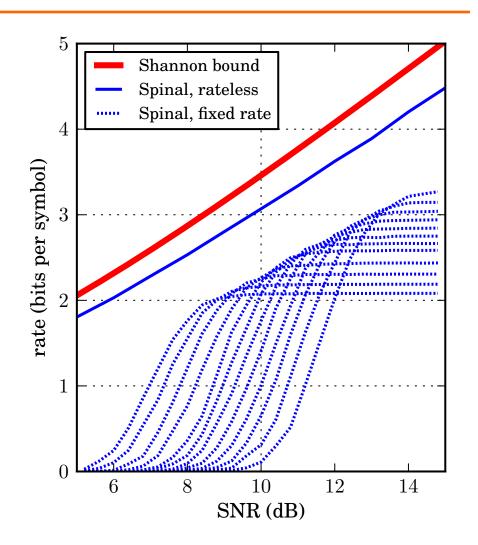
Spinal codes: Higher rate on AWGN channel



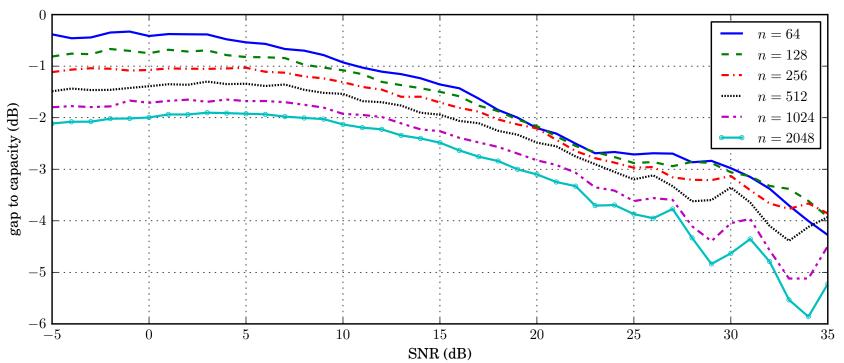
- Simulated AWGN channel: no link-layer performance effects here
- LDPC envelope: Choose best-performing rated LDPC code at each SNR to mimic the best a rate adaptation strategy could do
- Strider+: Strider + puncturing: finer rate control, but significant gap to capacity

Rateless codes can "hedge their bets"

- Constant SNR means constant average noise power
 - But, noise impacting any particular symbol(s) may be higher or lower
- Rated codes must be risk averse (send at lower rate)
- Rateless codes can decode with fewer symbols when noise is momentarily lower
- But this result requires perfect and instantaneous feedback so the rateless code knows when to stop



Spinal codes: Better at sending short messages



- Longer code block means more opportunities to prune correct path
 - So Spinal codes achieves better performance (smaller gap to capacity) with smaller code block length n
- We can see artifacts due to puncturing at higher SNRs

Spinal Codes: Conclusion

- Spinal Codes give performance close to Shannon capacity
- Eliminate the need to run a bit rate adaptation algorithm
- Simpler design and better performance
- Link layer design more open, incurs overhead between transmissions

Midterm format

- Timing: 60 minutes in a 90 minute timeslot
- 1. True/False/Don't Know questions
 - One point for a correct T/F response
 - No effect for a don't know response or no response
 - Minus one point for an incorrect T/F response
 - Rescaled as a section with a zero floor
- 2. Short answer questions
 - One to two, each on a theme

Friday Precept: Midterm Review

Tuesday Topic: Signals and Systems Preliminaries

Next Thursday: In-Class Midterm