Convolutional Codes

COS 463: Wireless Networks
Lecture 9
Kyle Jamieson

[Parts adapted from H. Balakrishnan]
1. **Encoding data using convolutional codes**
 - Encoder state
 - Changing code rate: Puncturing

2. **Decoding convolutional codes: Viterbi Algorithm**
Convolutional Encoding

- Don’t send message bits, send **only parity bits**
- Use a **sliding window** to select which message bits may participate in the parity calculations

Message bits:

```
1 0 1 1 0 1 1 0 0 1 0 1 1
```

Constraint length K
Sliding Parity Bit Calculation

Message bits:

\[K = 4 \]

-3 -2 -1 0 1 2 3 4 5 6 7 8 +

\[P[0] = 0 \]

Output: 0
Sliding Parity Bit Calculation

- **Message bits:** 0 0 0 0 1 1 0 1 0 0 1 0 1
- **K = 4**
- **Output:** 01

$P[1] = 1$
Sliding Parity Bit Calculation

\[P[2] = 0 \]

Output: 010
Sliding Parity Bit Calculation

Message bits:

- K = 4

Output: 0100

P[3] = 1
Multiple Parity Bits

-3 -2 -1 0 1 2 3 4 5 6 7 8

Message bits:
0 0 0 0 1 1 0 1 0 0 1 0 1

\[P_1[3] = 1 \]

\[P_2[3] = 1 \]

Output: ….11
Multiple Parity Bits

- Output: \(\ldots 1100 \)
Multiple Parity Bits

Message bits:

\[
\begin{array}{cccccccccc}
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}
\]

\[P_2[5] = 1\]

\[P_1[5] = 0\]

Output: ….110001
Encoder State

- **Input bit and K-1 bits of current state** determine state on next clock cycle
 - Number of states: 2^{K-1}
Constraint Length

• K is the constraint length of the code

• Larger K:
 – Greater redundancy
 – Better error correction possibilities (usually, not always)
Transmitting Parity Bits

- Transmit the parity sequences, not the message itself
 - Each message bit is “spread across” K bits of the output parity bit sequence

- If using multiple generators, **interleave** the bits of each generator
 - e.g. (two generators):
 \[p_0[0], p_1[0], p_0[1], p_1[1], p_0[2], p_1[2] \]
Transmitting Parity Bits

• **Code rate** is $1 / \#_{of_generators}$
 – *e.g.*, 2 generators \rightarrow rate = $\frac{1}{2}$

• **Engineering tradeoff:**
 – More generators *improves bit-error correction*
 • But *decreases rate of the code* (the number of message bits/s that can be transmitted)
Shift Register View

- One message bit $x[n]$ in, two parity bits out
 - **Each timestep:** message bits shifted right by one, the incoming bit moves into the left-most register

The values in the registers define the state of the encoder.
Today

1. Encoding data using convolutional codes
 – Encoder state machine
 – Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
State-Machine View

- Example: $K = 3$, code rate $= \frac{1}{2}$, convolutional code
 - There are 2^{K-1} state
 - **States** labeled with $(x[n-1], x[n-2])$
 - **Arcs** labeled with $x[n]/p_0[n]p_1[n]$
 - **Generator**: $g_0 = 111$, $g_1 = 101$
 - **msg** = 101100

![State-Machine Diagram]
State-Machine View

- $P_0[n] = (1 \times x[n] + 1 \times x[n-1] + 1 \times x[n-2]) \mod 2$
- $P_1[n] = (1 \times x[n] + 0 \times x[n-1] + 1 \times x[n-2]) \mod 2$
- Generators: $g_0 = 111, g_1 = 101$

- $\text{msg} = 101100$
- Transmit:
State-Machine View

- **msg** = 101100
- **Transmit**: 11

- \(P_0[n] = 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 \mod 2 \)
- \(P_1[n] = 1 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 \mod 2 \)
- **Generators**: \(g_0 = 111, g_1 = 101 \)
State-Machine View

• Starting state
 - $P_0[n] = 1*0 + 1*1 + 1*0 \mod 2$
 - $P_1[n] = 1*0 + 0*1 + 1*0 \mod 2$
 - Generators: $g_0 = 111$, $g_1 = 101$

• $\text{msg} = 101100$
• Transmit: 11 10
State-Machine View

- **Starting state**
 - $P_0[n] = 1*1 + 1*0 + 1*1 \mod 2$
 - $P_1[n] = 1*1 + 0*0 + 1*1 \mod 2$
 - **Generators**: $g_0 = 111$, $g_1 = 101$

- **msg** = 101100
- **Transmit**: 11 10 00
State-Machine View

• Starting state
 • $P_0[n] = 1 \times 1 + 1 \times 1 + 1 \times 0$
 • $P_1[n] = 1 \times 1 + 0 \times 1 + 1 \times 0$
 • Generators: $g_0 = 111$, $g_1 = 101$

• $msg = 101100$
• Transmit: 11 10 00 01
State-Machine View

Starting state

• \(P_0[n] = 1*0 + 1*1 + 1*1 \)
• \(P_1[n] = 1*0 + 0*1 + 1*1 \)
• Generators: \(g_0 = 111, g_1 = 101 \)

\[
\begin{align*}
\text{msg} & = 101100 \\
\text{Transmit:} & \quad 11\ 10\ 00\ 01\ 01
\end{align*}
\]
State-Machine View

- Starting state: 00
- Generators: $g_0 = 111$, $g_1 = 101$
- $P_0[n] = 1*0 + 1*0 + 1*1$
- $P_1[n] = 1*0 + 0*0 + 1*1$

- msg = 101100
- Transmit: 11 10 00 01 01 11
Today

1. Encoding data using convolutional codes
 - Encoder state machine
 - Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
Varying the Code Rate

• How to increase/decrease rate?

• Transmitter and receiver agree on coded bits to **omit**
 – *Puncturing table* indicates which bits to include (1)
 • Contains p columns, N rows

![Diagram showing data processing through a convolutional coder, coded bits, puncturing, and different code rates (2/3 and 3/4).]
Punctured convolutional codes: example

- Coded bits =

```
0 0 1 0 1
0 0 1 1 1
```

- With Puncturing:

```
P_1 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}
```

Puncturing table
Punctured convolutional codes: example

- Coded bits =

 \[
 \begin{array}{cccc}
 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 1 & 1 \\
 \end{array}
 \]

- With Puncturing:

 \[
 P_1 = \begin{pmatrix}
 1 & 1 & 1 & 0 \\
 1 & 0 & 0 & 1 \\
 \end{pmatrix}
 \]

 3 out of 4 bits are used

 2 out of 4 bits are used
Punctured convolutional codes: example

- Coded bits =

```
0 0 1 0 1
0 0 1 1 1
```

- With Puncturing:

```
P_1 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
\end{pmatrix}
```

- Punctured, coded bits:

```
0 0
```
Punctured convolutional codes: example

- Coded bits =

- With Puncturing:

\[P_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \]

- Punctured, coded bits:
Punctured convolutional codes: example

• Coded bits =

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

• With Puncturing:

\[
P_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
\]

• Punctured, coded bits:

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & \color{red}1 & \color{red}0 \\
\end{bmatrix}
\]
Punctured convolutional codes: example

- Coded bits =

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

- With Puncturing:

\[
P_1 = \begin{pmatrix}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}
\]

- Punctured, coded bits:

\[
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix}
\]
Punctured convolutional codes: example

• Coded bits =

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

• With Puncturing:

\[
P_1 = \begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{bmatrix}
\]

• Punctured, coded bits:

\[
\begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
\]
Punctured convolutional codes: example

• Coded bits =

```
0 0 1 0 1
0 0 1 1 1
```

• Punctured, coded bits:

```
0 0 1 1 1
0 1 1 1
```

• Punctured rate is: \(R = \frac{1/2}{5/8} = \frac{4}{5} \)
Today

1. Encoding data using convolutional codes
 - Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
 - Hard decision decoding
 - Soft decision decoding
Motivation: The Decoding Problem

- Received bits: 000101100110

- Some errors have occurred

- What’s the 4-bit message?

- Most likely: 0111
 - Message whose codeword is closest to received bits in Hamming distance

<table>
<thead>
<tr>
<th>Message</th>
<th>Coded bits</th>
<th>Hamming distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000000000000</td>
<td>5</td>
</tr>
<tr>
<td>0001</td>
<td>000000111011</td>
<td>--</td>
</tr>
<tr>
<td>0010</td>
<td>000011101100</td>
<td>--</td>
</tr>
<tr>
<td>0011</td>
<td>000011010111</td>
<td>--</td>
</tr>
<tr>
<td>0100</td>
<td>001110110000</td>
<td>--</td>
</tr>
<tr>
<td>0101</td>
<td>001110001011</td>
<td>--</td>
</tr>
<tr>
<td>0110</td>
<td>001101011100</td>
<td>--</td>
</tr>
<tr>
<td>0111</td>
<td>001101100111</td>
<td>2</td>
</tr>
<tr>
<td>1000</td>
<td>111011000000</td>
<td>--</td>
</tr>
<tr>
<td>1001</td>
<td>111011111011</td>
<td>--</td>
</tr>
<tr>
<td>1010</td>
<td>111000101100</td>
<td>--</td>
</tr>
<tr>
<td>1011</td>
<td>111000010111</td>
<td>--</td>
</tr>
<tr>
<td>1100</td>
<td>110101110000</td>
<td>--</td>
</tr>
<tr>
<td>1101</td>
<td>110101001011</td>
<td>--</td>
</tr>
<tr>
<td>1110</td>
<td>110110011100</td>
<td>--</td>
</tr>
<tr>
<td>1111</td>
<td>110110100111</td>
<td>--</td>
</tr>
</tbody>
</table>
The Trellis

- Vertically, lists encoder states
- Horizontally, tracks time steps
- Branches connect states in successive time steps

Trellis:

- States: 00, 01, 10, 11
- Time: x[n-1] x[n-2]
- Branches connecting states
The Trellis: Sender’s View

- At the sender, transmitted bits trace a unique, single path of branches through the trellis—e.g. transmitted data bits 1 0 1 1

- Recover transmitted bits \iff Recover path
Viterbi algorithm

- Andrew Viterbi (USC)
- **Want**: Most likely sent bit sequence
- Calculates **most likely path** through trellis

1. **Hard Decision Viterbi algorithm**: Have **possibly-corrupted** encoded **bits**, after reception

2. **Soft Decision Viterbi algorithm**: Have **possibly-corrupted likelihoods** of each bit, after reception
 - e.g.: “this bit is 90% likely to be a 1.”
Viterbi algorithm: Summary

- **Branch metrics** score likelihood of each trellis branch

- At any given time there are 2^{K-1} most likely messages we’re tracking (one for each state)
 - One message ↔ one trellis path
 - **Path metrics** score likelihood of each trellis path

- **Most likely message** is the one that produces the smallest path metric
Today

1. Encoding data using convolutional codes
 - Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
 - Hard decision decoding
 - Soft decision decoding
Hard-decision branch metric

- Hard decisions \rightarrow input is bits

- **Label every branch** of trellis with branch metrics
 - *Hard Decision Branch metric*: Hamming Distance between received and transmitted bits

![Trellis diagram](diagram.png)

Received: 00

States:

- 00
- 01
- 10
- 11

Branch metrics:

- 0/00 \rightarrow 0
- 1/11 \rightarrow 2
- 0/11 \rightarrow 2
- 1/00 \rightarrow 0
- 0/01 \rightarrow 1
- 0/10 \rightarrow 1
- 1/01 \rightarrow 1
- 1/10 \rightarrow 1
Hard-decision branch metric

- Suppose we know encoder is in state 00, receive bits: 00
Hard-decision path metric

- **Hard-decision path metric**: Sum Hamming distance between sent and received bits along path

- Encoder is initially in state 00, receive bits: 00

Received: 00
Right now, each state has a unique predecessor state.

Path metric: Total bit errors along path ending at state
- Path metric of predecessor + branch metric
Hard-decision path metric

- Each state has **two predecessor states**, **two predecessor paths** (which to use?)

- Winning branch has **lower** path metric (**fewer** bit errors): **Prune losing** branch

Received: 00 11 01
Hard-decision path metric

- Prune losing branch \textbf{for each state} in trellis

Received: 00 11 01

![Trellis diagram with states and transitions]

- States 0, 2, 3, and 4 are shown with transitions labeled by received symbols and branch metrics (00, 01, 10, 11).
- The diagram illustrates the path metric computation for each state.

- The path metric for each state is calculated based on the received symbols and the transition metrics.
Pruning non-surviving branches

- **Survivor path** begins at each state, traces unique path back to **beginning** of trellis
 - **Correct path** is one of **four** survivor paths

- Some branches are not part of any survivor: **prune them**

Received: 00 11 01

```
00 0/00 → 0  0/00 → 2  0/00 → 1
01 1/11 → 2  0/10 → 1  0/10 → 1
10 1/11 → 0  1/01 → 2  1/01 → 0
11 3
```

Diagram showing the trellis with survivors and non-survivors.
When **only one branch remains** at a stage, the Viterbi algorithm **decides** that branch’s input bits:

Received: 00 11 01
Decide: 0

![Diagram showing decision process with received bits and corresponding decisions](image-url)
End of received data

- **Trace back** the survivor with **minimal path metric**
- Later stages **don’t get benefit** of future error correction, had data not ended

<table>
<thead>
<tr>
<th>Received:</th>
<th>00</th>
<th>11</th>
<th>01</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide:</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

```
0 0
0 1
1 0
1 1
```
Terminating the code

- **Sender** transmits **two 0 data bits** at end of data

- **Receiver** uses the following trellis at end:

 - **After termination only one trellis survivor path** remains
 - Can **make better bit decisions at end of data** based on this sole survivor
Viterbi with a Punctured Code

- Punctured bits are never transmitted

- Branch metric measures dissimilarity only between received and transmitted unpunctured bits
 - Same path metric, same Viterbi algorithm
 - Lose some error correction capability

```
Received: 0-

States

0 0
0 1
1 0
1 1

0/00 → 0
1/11 → 1
0/11 → 1
1/00 → 0
0/10 → 1
1/01 → 0
1/10 → 1
```
Today

1. Encoding data using convolutional codes
 – Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
 – Hard decision decoding
 • Error correcting capability
 – Soft decision decoding
How many bit errors can we correct?

- Think back to the encoder; **linearity property:**
 - Message $m_1 \rightarrow$ Coded bits c_1
 - Message $m_2 \rightarrow$ Coded bits c_2
 - Message $m_1 \oplus m_2 \rightarrow$ Coded bits $c_1 \oplus c_2$

- So, $d_{\text{min}} = \text{minimum distance between } 000...000 \text{ codeword and codeword with fewest 1s}$
Calculating d_{min} for the convolutional code

- Find path with **smallest non-zero path metric** going from **first 00 state** to a **future 00 state**

- Here, $d_{\text{min}} = 4$, so can correct 1 error in 8 bits:

\[
x[n-1]x[n-2]
\]

\[
x[n]
\]

The free distance is the difference in path metrics between the all-zeroes output and the path with the smallest non-zero path metric going from the initial 00 state to some future 00 state. It is 4 in this example. The path 00 \rightarrow 10 \rightarrow 01 has a shorter length, but a higher path metric (of 5), so it is not the free distance.

Figure 8-5: Branch metric for soft decision decoding.

Figure 8-6: The free distance of a convolutional code.
Today

1. Encoding data using convolutional codes
 – Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
 – Hard decision decoding
 – Soft decision decoding
Model for Today

- **Coded bits** are actually **continuously-valued “voltages”** between **0.0 V and 1.0 V**:

 - **Strong “1”**
 - **Weak “1”**
 - **Weak “0”**
 - **Strong “0”**
On Hard Decisions

- Hard decisions digitize each voltage to “0” or “1” by comparison against threshold voltage 0.5 V
 - Lose information about how “good” the bit is
 - Strong “1” (0.99 V) treated equally to weak “1” (0.51 V)

- Hamming distance for branch metric computation

- But throwing away information is almost never a good idea when making decisions
 - Find a better branch metric that retains information about the received voltages?
Soft-decision decoding

• **Idea**: Pass received voltages to decoder before digitizing
 – **Problem**: Hard branch metric was Hamming distance

• **“Soft” branch metric**
 – **Euclidian distance** between received voltages and voltages of expected bits:

![Diagram](image)

“Soft” metric

Expected parity bits:
(0, 1)
Soft-decision decoding

- **Different** branch metric, hence **different** path metric

- **Same** path metric computation

- **Same** Viterbi algorithm

- **Result:** Choose **path** that minimizes sum of squares of Euclidean **distances** between received, expected **voltages**
Putting it together: Convolutional coding in Wi-Fi

Data bits

Convolutional encoder

Coded bits

Modulation (BPSK, QPSK, …)

Demodulation

Data bits

Viterbi Decoder

Coded bits (hard-decision decoding) or Voltage Levels (soft-decision decoding)
Thursday Topic: Rateless Codes

Friday Precept: Midterm Review