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Today

1. Encoding data using convolutional codes
— Encoder state
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm



Convolutional Encoding

* Don’t send message bits, send only parity bits

* Use a sliding window to select which message bits may
participate in the parity calculations

Message bits: 1101111011010 110] 1
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Sliding Parity Bit Calculation
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Sliding Parity Bit Calculation
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P[1] =1
* Output: 01



Sliding Parity Bit Calculation
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* Output: 010



Sliding Parity Bit Calculation
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Multiple Parity Bits
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* Output: ....11 P,[3] =1



Multiple Parity Bits
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Multiple Parity Bits

J'—> P,[5] =1

3 -2 1 0 1 2
Message i""i'“' 1
bits: 1___!___

* Output: .... 110001 P,[5]=0
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Encoder State

 Input bit and K-1 bits of current state determine state on
next clock cycle

— Number of states: 2K

Input bit

State
A
______ [ |
Message | i'

bits: ;L_(B_‘_(B_OO11O’IOO’IO’I
\ )

|
Constraint length K
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Constraint Length

* Kis the constraint length of the code

» Larger K:
— Greater redundancy
— Better error correction possibilities (usually, not always)

12



Transmitting Parity Bits

« Transmit the parity sequences, not the message itself

— Each message bit is “spread across” K bits of the
output parity bit sequence

— If using multiple generators, interleave the bits of
each generator

* e.9. (two generators):

pol0], p1[0], ol 1], p111], Pol 2], p4[2]
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Transmitting Parity Bits

 Coderateis 1/# of generators
— e.g., 2 generators - rate = %

* Engineering tradeoff:
— More generators improves bit-error correction

« But decreases rate of the code (the number of
message bits/s that can be transmitted)
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Shift Register View

pi[n]

The values in
the registers
define the state
of the encoder

Po[n]

* One message bit x[n] in, two parity bits out

— Each timestep: message bits shifted right by one, the
incoming bit moves into the left-most register
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Today

1. Encoding data using convolutional codes
— Encoder state machine
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm



State-Machine View

 Example: K =3, code rate = 2, convolutional code
— There are 2K state
— States labeled with (x[n-1], x[n-2])
— Arcs labeled with x[n]/p,[n]p,[n]
— Generator: g, =111, g, =101
— msg = 101100
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State-Machine View

Starting state - Pg[n]=(1"x[n] + 1*x[n-1] + 1*x[n-2]) mod 2

0/00 - 4—’ J— * P4[n] = (1"X[n] + 0*x[n-1] + 1*x[n-2]) mod 2
"‘ N 1A  Generators: g, = 111, g, = 101
“=»i 00 - 10 ) G0 =11, 6
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* msg = 101100

* Transmit:
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State-Machine View

Starting state - Pyn]=1"1+1"0+ 10 mod 2

0/00 "\y *'1/11 e P,n]=1*1+0%0+ 1*0 mod 2
~>,' 00 ,_____’ « Generators: g, = 111, g, = 1071
\Nl,t , 6/—1-6/
011 ' 7 I 1/01
[\\;1100 L

l‘ 01 J=—--+4 11

e/ 001 % ___7 %110

-

 msg =101100
 Transmit: 11
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State-Machine View

_}Starting state - P n]=1"0+1"1+ 10 mod 2
j « Pyn]=1"0+0"1+1*0 mod 2
\\'_1/11 N - Generators: g, = 111, g, = 101

* msg =101100
* Transmit: 11 10
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State-Machine View

Starting state - P n]=1"1+1"0+ 11 mod 2

0/00 "\,, -~ « P,[n]=1*1+0%0 + 1*1 mod 2
~>,' 00 ‘,_1/_1_"_ « Generators: g, = 111, g, = 1071
. / 0/10_—
i T
0/11 Y
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\—— ,

l‘ 01 J=—--+4 11

e/ 001 % ___7 %110

-

« msg =101100
* Transmit: 11 10 00
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State-Machine View

Starting state - P n]=1"1+1"1+1%0
0/00 4—' - « Pyn]=1"1+0"+1*0

” N1 7N . Cy = _
~>,' 00 ,_____,," 10 Generators: g, = 111, g, = 107
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 msg = 101100
* Transmit: 11 10 00 01
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State-Machine View

Starting state - P n]=1"0+1"1+ 1"
0/00 y 4—'1/11 o  Pyn]=1*0+0*1+1*1
~>,' 00 '_____»," 10 « Generators: g, = 111, g, = 101
N 0/10.-3
N i T
o/11 |} ! J o
\ 4

* msg = 101100
* Transmit: 11 10 00 01 01
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State-Machine View

_}Starting state - P n]=1"0+1"0+1*1
g « P,[n] = 190 + 00 + 1*1
AT 77 « Generators: g, = 111, g, = 101

* msg = 101100
* Transmit;: 11 10 00 01 01 11



Today

1. Encoding data using convolutional codes
— Encoder state machine
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
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Varying the Code Rate

« How to increase/decrease rate?

* Transmitter and receiver agree on coded bits to omit
— Puncturing table indicates which bits to include (1)
» Contains p columns, N rows

data

convolutional

P
== 2/3 code

N{(11
1/2 code 10

coder

Coded bits

{

puncturing

3/4 code
/’ 110
101 A

,/

»
Puncture, coded bits
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

e Puncturing table
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

3 out of 4 bits are used

> 4
,/

_f1110}%
P1'({1qo1§
V4

4
4

»
2 out of 4 bits are used
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=( (1)(1)(1))

 Punctured, coded bits:
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(3001

 Punctured, coded bits:
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(3001

010 1
0

 Punctured, coded bits:




Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(100

 Punctured, coded bits:
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Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=( (1)(1)(1))

 Punctured, coded bits:
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Punctured convolutional codes: example

« Coded bits =

 Punctured, coded bits:

* Punctured rate is: R =(1/2) / (5/8) = 4/5
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Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding
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Motivation: The Decoding Problem

o0

0000 000000000000 5
0001 000000111011
« Some errors have occurred 0010 00001101100
0011 000011010111
0100 001110110000
» What's the 4-bit message? 0101 001110001011
0110 001101011100
. Jgp— 0111 001101100111 2
* MOSt Ilkely: 0111 - 1000 111011000000
— Message whose codeword 1001 111011111011
IS closest to received bits 1010 111000101100
In Hamming distance 1011 111000010111
1100 110101110000
1101 110101001011
1110 110110011100
1111 110110100111
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The Trellis

0/00

Starting state

Trellis:
00 — 2/00
/77
8 0 1 ’,V
® -
b7 10 Branch
.11 Time 2

x[n-1] x[n-2]

Vertically, lists encoder states
Horizontally, tracks time steps

Branches connect states in
successive time steps

0/00 0/00 . 0/00
p g 7 7z
" 7 7




The Trellis: Sender’s View

» At the sender, transmitted bits trace a unique, single
path of branches through the trellis

— e.g. transmitted data bits 10 1 1

 Recover transmitted bits & Recover path

x[n-1] x[n-2]

00 ——

01

<

States

10

L 11

Time =




Viterbi algorithm

« Andrew Viterbi (USC)

- Want: Most likely sent bit sequence

« Calculates most likely path through trellis

1. Hard Decision Viterbi algorithm: Have possibly-
corrupted encoded bits, after reception

2. Soft Decision Viterbi algorithm: Have possibly-
corrupted likelihoods of each bit, after reception

— e.g.: "this bit is 90% likely tobe a 1.”
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Viterbi algorithm: Summary

Branch metrics score likelihood of each trellis branch

At any given time there are 2“1 most likely messages we're
tracking (one for each state)

— One message < one trellis path
— Path metrics score likelihood of each trellis path

Most likely message is the one that produces the smallest
path metric
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Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding
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Hard-decision branch metric

« Hard decisions = input is bits

» Label every branch of trellis with branch metrics

— Hard Decision Branch meftric: Hamming Distance
between received and transmitted bits

Received: 00

- 00 0/00>0
§ 01
-S L
n 10

L 11 110 > 1




Hard-decision branch metric

* Suppose we know encoder is in state 00, receive bits: 00

Received: 00

States
A

L 11

Time =
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Hard-decision path metric

* Hard-decision path metric: Sum Hamming distance
between sent and received bits along path

* Encoder is initially in state 00, receive bits: 00

Received: 00

00 ——[gk20>0,r5
01
10 2
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Hard-decision path metric

* Right now, each state has a unique predecessor state

» Path metric: Total bit errors along path ending at state
— Path metric of predecessor + branch metric

Received: 00 11 ﬂ

0/00 > 2
-2

00 —[pl200>0,

01

10

11 3




Hard-decision path metric

« Each state has two predecessor states, two
predecessor paths (which to use?)

* Winning branch has lower path metric (fewer bit errors):
Prune losing branch

Received: 00 11 01 ﬂ
0/00>0 0/00 > 2 0/00 > 1
00 — 2] 3] &
A
> |
01 3 P
10 0
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Hard-decision path metric

* Prune losing branch for each state in trellis

Received: 00 11 01

0/00 > 0> 0/00 > 2 ) 0/00 - 1>

00 ™

01

10

11




Pruning non-surviving branches

Survivor path begins at each state, traces unique path
back to beginning of trellis

— Correct path is one of four survivor paths

« Some branches are not part of any survivor: prune them

Received: 00 11 01 ﬂ
00 —> 0/0090> 0/0092> 0;0091>3
'/
01 2
10 3] &=
11 3 0] <=
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Making bit decisions

When only one branch remains at a stage, the Viterbi
algorithm decides that branch’s input bits:

Received: 00 11 01
Decide: 0

00 —J[0 0/0090>0 0/0092> 0;/0091>3
01 2
10 3
11 0




End of received data

Trace back the survivor with minimal path metric

Later stages don’t get benefit of future error correction,
had data not ended

Received: 00 11 01 10
Decide: 0 1 1 1

00 0 0/0092> 0i/0091> 3
01 2
10 3
11 0 0

110> 0
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Terminating the code

 Sender transmits two 0 data bits at end of data

* Receiver uses the following trellis at end:

 After termination only one trellis survivor path remains

— Can make better bit decisions at end of data based
on this sole survivor
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Viterbi with a Punctured Code

 Punctured bits are never transmitted

Branch metric measures dissimilarity only between
received and transmitted unpunctured bits

— Same path metric, same Viterbi algorithm
— Lose some error correction capability

Received: 0-

- 00 0/00>0
§ 01
-S L
n 10

L 11 110 > 1
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Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
* Error correcting capability
— Soft decision decoding

53



How many bit errors can we correct?

« Think back to the encoder; linearity property:
— Message m, = Coded bits c,
— Message m, = Coded bits c,
— Message m, & m, = Coded bits ¢, & c,

FofoTofol1]iTol 1 Tolo] 1 o]

* S0, d_;, = minimum distance between 000...000 codeword and
codeword with fewest 1s



Calculating d ;. for the convolutional code

Find path with smallest non-zero path metric going from
first 00 state to a future 00 state

Here, d_.., = 4, so can correct 1 error in 8 bits:

x[n] 0 0 0 0 0 0
00 00 00 00 ‘
00 VT V-V /G e«ae—gIZ 0/00——3 0/00
$/\11 1/11 1/11 1 1/11 1/11
3 % |
0/10, oo [ |00 0710 0710 010 l*
O]. ‘\ 7l 7| [ 3 7, X 7
101 %= 1101 101 1101 L1101 o1 L
\\ y |
01/ 0711 o011 0/11 ' o1 /o 0A1 /]
/
10 1/00 2 M.00 | 1/0p 1400 1/00 1/00
N /
AN
0/01 001 /6/01 0/01 0/01 0/01
11 1110+ 1110 d‘, 2 (1110 1710 7 17110 1/10

x[n-1]x[n-2]
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Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding
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Model for Today

« Coded bits are actually continuously-valued “voltages”

between 0.0 Vand 1.0 V:

1.0V —
Strong “1”

Weak “1”

Weak “0”

ooV I Strong “0”
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On Hard Decisions

Hard decisions digitize each voltage to “0” or “1” by
comparison against threshold voltage 0.5 V

— Lose information about how “good” the bit is
« Strong “17 (0.99 V) treated equally to weak “1” (0.51 V)

Hamming distance for branch metric computation

But throwing away information is almost never a good
iIdea when making decisions

— Find a better branch metric that retains information about
the received voltages?
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Soft-decision decoding

“Soft” branch metric

Idea: Pass received voltages to decoder before digitizing
— Problem: Hard branch metric was Hamming distance

— Euclidian distance between received voltages and voltages

of expected bits:

“Soft” metric ====-- -&.
Expected parity bits:

(0, 1)

0.0,00e&

© 1.0, 0.0
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Soft-decision decoding

 Different branch metric, hence different path metric
« Same path metric computation

« Same Viterbi algorithm

* Result: Choose path that minimizes sum of squares of
Euclidean distances between received, expected voltages



Putting it together:
Convolutional coding in Wi-Fi

Data bits
Data bits Viterbi
l Decoder
Convolutional Coded bits (hard-
encoder decision decoding) or
: Voltage Levels (soft-
Coded bits ‘1, 37 decision decoding)
Modulation v T
(BPSK, QPSK, ...)

Demodulation




Thursday Topic:
Rateless Codes

Friday Precept:
Midterm Review
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