Convolutional Codes

COS 463: Wireless Networks
Lecture 9
Kyle Jamieson

[Parts adapted from H. Balakrishnan]

Today

1. Encoding data using convolutional codes
— Encoder state
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm

Convolutional Encoding

* Don’t send message bits, send only parity bits

* Use a sliding window to select which message bits may
participate in the parity calculations

Message bits: 1101111011010 110] 1

A\ J
Y

Constraint length K

Sliding Parity Bit Calculation

K=4
\
[|
3 2 4 0 1 2 4 5 6 7 8
r===r===
Messagel ot o 1o o 1]+ olo|1]o0
bits: |___!___

 Output: 0

Sliding Parity Bit Calculation

K=4
\
(\

3.2 4.0 1 2 4 5 6 7 8
Mes.sageioﬁ olol1]+ olol1]o
bits: ___}1___

A
(+)

P[1] =1
* Output: 01

Sliding Parity Bit Calculation

K=4
A
[|
32 1.0 12 3 4 5 6 7 8
r===r===
Message ot o 1o o 1]+ 1{oflo]1]o0
bits: 1___! __
A
(+)

* Output: 010

Sliding Parity Bit Calculation

K=4
\
[|
32 10 12 3 4 5 6 7 8
rF===r===
Message: st otolof1l1/of1]oflo]1]o0
bits: 1___! __
A

T~
_Il

Lp[s] = 1

e Output: 0100

Multiple Parity Bits

—I'—> P,[3] =1

(+)
3 -2 1 0 1 2 3 4 5
r=—-r---
Message totofofof1]1]o]1]o
its: N
A)
{4
o/

* Output:11 P,[3] =1

Multiple Parity Bits

—I'—> P,[4] =

(+)

-3 -2 -1 1 2 3 4 5
Message ot o Tolo[1[1 o010
bits: L_.__1___

A)
(+)

* Output: 1100 P,[4]

Multiple Parity Bits

J'—> P,[5] =1

3 -2 1 0 1 2
Message i""i'“' 1
bits: 1___!___

* Output: 110001 P,[5]=0

10

Encoder State

 Input bit and K-1 bits of current state determine state on
next clock cycle

— Number of states: 2K

Input bit

State
A
______ [|
Message | i'

bits: ;L_(B_‘_(B_OO11O’IOO’IO’I
\)

|
Constraint length K

11

Constraint Length

* Kis the constraint length of the code

» Larger K:
— Greater redundancy
— Better error correction possibilities (usually, not always)

12

Transmitting Parity Bits

« Transmit the parity sequences, not the message itself

— Each message bit is “spread across” K bits of the
output parity bit sequence

— If using multiple generators, interleave the bits of
each generator

* e.9. (two generators):

pol0], p1[0], ol 1], p111], Pol 2], p4[2]

13

Transmitting Parity Bits

 Coderateis 1/# of generators
— e.g., 2 generators - rate = %

* Engineering tradeoff:
— More generators improves bit-error correction

« But decreases rate of the code (the number of
message bits/s that can be transmitted)

14

Shift Register View

pi[n]

The values in
the registers
define the state
of the encoder

Po[n]

* One message bit x[n] in, two parity bits out

— Each timestep: message bits shifted right by one, the
incoming bit moves into the left-most register

15

Today

1. Encoding data using convolutional codes
— Encoder state machine
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm

State-Machine View

 Example: K =3, code rate = 2, convolutional code
— There are 2K state
— States labeled with (x[n-1], x[n-2])
— Arcs labeled with x[n]/p,[n]p,[n]
— Generator: g, =111, g, =101
— msg = 101100

Starting state

&

0/00 L i
,’ \ 1/11 ,’ ®
“o»i 00 === 10

\ /I '}

N A
WK ol 1T
0111 ! ,"1/08”9' ' 1/01
L~\¥ ’ ,,‘txs
{01 e 11)
e 001N/ Y110

~-’, R T

\N-’,

’

\>-’,

e

State-Machine View

Starting state - Pg[n]=(1"x[n] + 1*x[n-1] + 1*x[n-2]) mod 2

0/00 - 4—’ J— * P4[n] = (1"X[n] + 0*x[n-1] + 1*x[n-2]) mod 2
"‘ N 1A Generators: g, = 111, g, = 101
“=»i 00 - 10) G0 =11, 6
\\ ,/ }
'y T’
o+ 0’19' ' 1/01
L~\~1/00 t\

\——’

{01 ,‘-<-----(11
s 001 5___/ Y110

- -

* msg = 101100

* Transmit:
18

State-Machine View

Starting state - Pyn]=1"1+1"0+ 10 mod 2

0/00 "\y *'1/11 e P,n]=1*1+0%0+ 1*0 mod 2
~>,' 00 ,_____’ « Generators: g, = 111, g, = 1071
\Nl,t , 6/—1-6/
011 ' 7 I 1/01
[\\;1100 L

l‘ 01 J=—--+4 11

e/ 001 % ___7 %110

-

 msg =101100
 Transmit: 11

19

State-Machine View

_}Starting state - P n]=1"0+1"1+ 10 mod 2
j « Pyn]=1"0+0"1+1*0 mod 2
\\'_1/11 N - Generators: g, = 111, g, = 101

* msg =101100
* Transmit: 11 10

20

State-Machine View

Starting state - P n]=1"1+1"0+ 11 mod 2

0/00 "\,, -~ « P,[n]=1*1+0%0 + 1*1 mod 2
~>,' 00 ‘,_1/_1_"_ « Generators: g, = 111, g, = 1071
. / 0/10_—
i T
0/11 Y
[\\;1100 L

\—— ,

l‘ 01 J=—--+4 11

e/ 001 % ___7 %110

-

« msg =101100
* Transmit: 11 10 00

21

State-Machine View

Starting state - P n]=1"1+1"1+1%0
0/00 4—' - « Pyn]=1"1+0"+1*0

” N1 7N . Cy = _
~>,' 00 ,_____,," 10 Generators: g, = 111, g, = 107

_ ’0/10__;‘ v

r - 7

0/11 |

/'—LN\"

4

[01 m=—--

 msg = 101100
* Transmit: 11 10 00 01

22

State-Machine View

Starting state - P n]=1"0+1"1+ 1"
0/00 y 4—'1/11 o Pyn]=1*0+0*1+1*1
~>,' 00 '_____»," 10 « Generators: g, = 111, g, = 101
N 0/10.-3
N i T
o/11 |} ! J o
\ 4

* msg = 101100
* Transmit: 11 10 00 01 01

23

State-Machine View

_}Starting state - P n]=1"0+1"0+1*1
g « P,[n] = 190 + 00 + 1*1
AT 77 « Generators: g, = 111, g, = 101

* msg = 101100
* Transmit;: 11 10 00 01 01 11

Today

1. Encoding data using convolutional codes
— Encoder state machine
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm

25

Varying the Code Rate

« How to increase/decrease rate?

* Transmitter and receiver agree on coded bits to omit
— Puncturing table indicates which bits to include (1)
» Contains p columns, N rows

data

convolutional

P
== 2/3 code

N{(11
1/2 code 10

coder

Coded bits

{

puncturing

3/4 code
/’ 110
101 A

,/

»
Puncture, coded bits

26

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

e Puncturing table

27

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

3 out of 4 bits are used

> 4
,/

_f1110}%
P1'({1qo1§
V4

4
4

»
2 out of 4 bits are used

28

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=((1)(1)(1))

 Punctured, coded bits:

29

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(3001

 Punctured, coded bits:

30

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(3001

010 1
0

 Punctured, coded bits:

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=(100

 Punctured, coded bits:

32

Punctured convolutional codes: example

« Coded bits =

* With Puncturing:

P=((1)(1)(1))

 Punctured, coded bits:

33

Punctured convolutional codes: example

« Coded bits =

 Punctured, coded bits:

* Punctured rate is: R =(1/2) / (5/8) = 4/5

34

Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding

35

Motivation: The Decoding Problem

o0

0000 000000000000 5
0001 000000111011
« Some errors have occurred 0010 00001101100
0011 000011010111
0100 001110110000
» What's the 4-bit message? 0101 001110001011
0110 001101011100
. Jgp— 0111 001101100111 2
* MOSt Ilkely: 0111 - 1000 111011000000
— Message whose codeword 1001 111011111011
IS closest to received bits 1010 111000101100
In Hamming distance 1011 111000010111
1100 110101110000
1101 110101001011
1110 110110011100
1111 110110100111

36

The Trellis

0/00

Starting state

Trellis:
00 — 2/00
/77
8 0 1 ’,V
® -
b7 10 Branch
.11 Time 2

x[n-1] x[n-2]

Vertically, lists encoder states
Horizontally, tracks time steps

Branches connect states in
successive time steps

0/00 0/00 . 0/00
p g 7 7z
" 7 7

The Trellis: Sender’s View

» At the sender, transmitted bits trace a unique, single
path of branches through the trellis

— e.g. transmitted data bits 10 1 1

 Recover transmitted bits & Recover path

x[n-1] x[n-2]

00 ——

01

<

States

10

L 11

Time =

Viterbi algorithm

« Andrew Viterbi (USC)

- Want: Most likely sent bit sequence

« Calculates most likely path through trellis

1. Hard Decision Viterbi algorithm: Have possibly-
corrupted encoded bits, after reception

2. Soft Decision Viterbi algorithm: Have possibly-
corrupted likelihoods of each bit, after reception

— e.g.: "this bit is 90% likely tobe a 1.”

39

Viterbi algorithm: Summary

Branch metrics score likelihood of each trellis branch

At any given time there are 2“1 most likely messages we're
tracking (one for each state)

— One message < one trellis path
— Path metrics score likelihood of each trellis path

Most likely message is the one that produces the smallest
path metric

40

Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding

41

Hard-decision branch metric

« Hard decisions = input is bits

» Label every branch of trellis with branch metrics

— Hard Decision Branch meftric: Hamming Distance
between received and transmitted bits

Received: 00

- 00 0/00>0
§ 01
-S L
n 10

L 11 110 > 1

Hard-decision branch metric

* Suppose we know encoder is in state 00, receive bits: 00

Received: 00

States
A

L 11

Time =

43

Hard-decision path metric

* Hard-decision path metric: Sum Hamming distance
between sent and received bits along path

* Encoder is initially in state 00, receive bits: 00

Received: 00

00 ——[gk20>0,r5
01
10 2

11

Hard-decision path metric

* Right now, each state has a unique predecessor state

» Path metric: Total bit errors along path ending at state
— Path metric of predecessor + branch metric

Received: 00 11 ﬂ

0/00 > 2
-2

00 —[pl200>0,

01

10

11 3

Hard-decision path metric

« Each state has two predecessor states, two
predecessor paths (which to use?)

* Winning branch has lower path metric (fewer bit errors):
Prune losing branch

Received: 00 11 01 ﬂ
0/00>0 0/00 > 2 0/00 > 1
00 — 2] 3] &
A
> |
01 3 P
10 0

11

Hard-decision path metric

* Prune losing branch for each state in trellis

Received: 00 11 01

0/00 > 0> 0/00 > 2) 0/00 - 1>

00 ™

01

10

11

Pruning non-surviving branches

Survivor path begins at each state, traces unique path
back to beginning of trellis

— Correct path is one of four survivor paths

« Some branches are not part of any survivor: prune them

Received: 00 11 01 ﬂ
00 —> 0/0090> 0/0092> 0;0091>3
'/
01 2
10 3] &=
11 3 0] <=

48

Making bit decisions

When only one branch remains at a stage, the Viterbi
algorithm decides that branch’s input bits:

Received: 00 11 01
Decide: 0

00 —J[0 0/0090>0 0/0092> 0;/0091>3
01 2
10 3
11 0

End of received data

Trace back the survivor with minimal path metric

Later stages don’t get benefit of future error correction,
had data not ended

Received: 00 11 01 10
Decide: 0 1 1 1

00 0 0/0092> 0i/0091> 3
01 2
10 3
11 0 0

110> 0
50

Terminating the code

 Sender transmits two 0 data bits at end of data

* Receiver uses the following trellis at end:

 After termination only one trellis survivor path remains

— Can make better bit decisions at end of data based
on this sole survivor

51

Viterbi with a Punctured Code

 Punctured bits are never transmitted

Branch metric measures dissimilarity only between
received and transmitted unpunctured bits

— Same path metric, same Viterbi algorithm
— Lose some error correction capability

Received: 0-

- 00 0/00>0
§ 01
-S L
n 10

L 11 110 > 1

52

Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
* Error correcting capability
— Soft decision decoding

53

How many bit errors can we correct?

« Think back to the encoder; linearity property:
— Message m, = Coded bits c,
— Message m, = Coded bits c,
— Message m, & m, = Coded bits ¢, & c,

FofoTofol1]iTol 1 Tolo] 1 o]

* S0, d_;, = minimum distance between 000...000 codeword and
codeword with fewest 1s

Calculating d ;. for the convolutional code

Find path with smallest non-zero path metric going from
first 00 state to a future 00 state

Here, d_.., = 4, so can correct 1 error in 8 bits:

x[n] 0 0 0 0 0 0
00 00 00 00 ‘
00 VT V-V /G e«ae—gIZ 0/00——3 0/00
$/\11 1/11 1/11 1 1/11 1/11
3 % |
0/10, oo [|00 0710 0710 010 l*
O]. ‘\ 7l 7| [3 7, X 7
101 %= 1101 101 1101 L1101 o1 L
\\ y |
01/ 0711 o011 0/11 ' o1 /o 0A1 /]
/
10 1/00 2 M.00 | 1/0p 1400 1/00 1/00
N /
AN
0/01 001 /6/01 0/01 0/01 0/01
11 1110+ 1110 d‘, 2 (1110 1710 7 17110 1/10

x[n-1]x[n-2]

55

Today

1. Encoding data using convolutional codes
— Changing code rate: Puncturing

2. Decoding convolutional codes: Viterbi Algorithm
— Hard decision decoding
— Soft decision decoding

56

Model for Today

« Coded bits are actually continuously-valued “voltages”

between 0.0 Vand 1.0 V:

1.0V —
Strong “1”

Weak “1”

Weak “0”

ooV I Strong “0”

57

On Hard Decisions

Hard decisions digitize each voltage to “0” or “1” by
comparison against threshold voltage 0.5 V

— Lose information about how “good” the bit is
« Strong “17 (0.99 V) treated equally to weak “1” (0.51 V)

Hamming distance for branch metric computation

But throwing away information is almost never a good
iIdea when making decisions

— Find a better branch metric that retains information about
the received voltages?

58

Soft-decision decoding

“Soft” branch metric

Idea: Pass received voltages to decoder before digitizing
— Problem: Hard branch metric was Hamming distance

— Euclidian distance between received voltages and voltages

of expected bits:

“Soft” metric ====-- -&.
Expected parity bits:

(0, 1)

0.0,00e&

© 1.0, 0.0

59

Soft-decision decoding

 Different branch metric, hence different path metric
« Same path metric computation

« Same Viterbi algorithm

* Result: Choose path that minimizes sum of squares of
Euclidean distances between received, expected voltages

Putting it together:
Convolutional coding in Wi-Fi

Data bits
Data bits Viterbi
l Decoder
Convolutional Coded bits (hard-
encoder decision decoding) or
: Voltage Levels (soft-
Coded bits ‘1, 37 decision decoding)
Modulation v T
(BPSK, QPSK, ...)

Demodulation

Thursday Topic:
Rateless Codes

Friday Precept:
Midterm Review

62

