Detecting and Correcting Bit Errors

fi| veT [Nov (M
TES | TAM
il Ex [Tvm |9

COS 463: Wireless Networks
Lecture 8
Kyle Jamieson

Bit errors on links

* Links in a network go through hostile environments
— Both wired, and wireless:

— Consequently, errors will occur on links
— Today: How can we detect and correct these errors?

* There is limited capacity available on any link
— Tradeoff between link utilization & amount of error control

Today

1. Error control codes
— Encoding and decoding fundamentals
— Measuring a code’s error correcting power
— Measuring a code’s overhead
— Practical error control codes
* Parity check, Hamming block code

2. Error detection codes
— Cyclic redundancy check (CRC)

Where is error control coding used?

* The techniques we’'ll discuss today are
pervasive throughout the internetworking stack

* Based on theory, but broadly applicable in

practice, in other areas:

— Hard disk drives
— Optical media (CD, DVD, & c.)
— Satellite, mobile communications

* In 463, we cover the “tip of the iceberg” in the
Internetworking stack

Error control in the Internet stack

* Transport layer

— Internet Checksum (IC) Y Y
over TCP/UDP header, data §

TCP header

Error control in the Internet stack

« Transport layer

— Internet Checksum (IC) Y Y
over TCP/UDP header, data f{
TCP header
* Network layer (L3) ¥
— IC over IP header only (IC IP payload

IP header

Error control in the Internet stack

« Transport layer

— Internet Checksum (IC) Y Y
over TCP/UDP header, data ¢
TCP header

* Network layer (L3) ¥
— IC over IP header only '

IC
IP header

* Link layer (L2) y
— Cyclic Redundancy Check (CRC) [NRTEY T RN EW LY TN,

IP payload

Error control in the Internet stack

Transport layer

— Internet Checksum (IC) Y Y
over TCP/UDP header, data §

TCP header
* Network layer (L3) ¥
— IC over IP header only
IP header
* Link layer (L2) X

— Cyclic Redundancy Check (CRC) [RRFEr RN NNFIVIEY B NN T

Physical layer (PHY)
— Error Control Coding (ECC), or
— Forward Error Correction (FEC)

Today

1. Error control codes
— Encoding and decoding fundamentals
— Measuring a code’s error correcting power
— Measuring a code’s overhead
— Practical error control codes
* Parity check, Hamming block code

2. Error detection codes
— Cyclic redundancy check (CRC)

Network

Error control: Motivation

iy @
?1 * message-

Sender Receiver
“Allowed”

messages

« Every string of bits is an “allowed” message

— Hence any [JiELQEER GRS (bit errors) the sender
transmits produce “allowed” messages

* Therefore without error control, receiver wouldn’t
know errors happened!

10

Error control: Key Ideas

Reduce the set of “allowed” messages
— Not every string of bits is an “allowed” message

— Receipt of a disallowed string of bits means that the
message was garbled in transit over the network

We call an allowable message (of n bits) a codeword
— Not all n-bit strings are codewords!

— The remaining n-bit strings are “space” between
codewords

Plan: Receiver will use that space to both detect and
correct errors in transmitted messages

11

Encoding and decoding

* Problem: Not every string of bits is “allowed”
— But we want to be able to send any message!
— How can we send a “disallowed” message?

* Answer: Codes, as a sender-receiver protocol
— The sender must encode its messages =¥ codewords
— The receiver then decodes received bits = messages

* The relationship between messages and codewords
Isn’t always obvious!

A simple error-detecting code
» Let's start simple: suppose messages are one bit long

« Take the message bit, and repeat it once
— This is called a two-repetition code

Sender:
0 2 00
01 1@
10 ' ®
1 = 11

Receiving the two-repetition code

Suppose the network causes no bit error

Receiver removes repetition to correctly decode the
message bits

Sender: Network: Receiver:
0]~ 00 > 00 |»| 0]
o1

1 > 11 >11->1|

Detecting one bit error

Suppose the network causes up to one bit error

The receiver can detect the error:

— |t received a non-codeword

Can the receiver correct the error?

— No! The other codeword could have been sent as well

Sender: Network: Receiver:

o o)

Error detected

Error detected

ER

15

Reception with two bit errors

« (Can receiver detect presence of two bit errors?

— No: It has no way of telling which codeword was sent!

* Enough bit errors that the sent codeword “jumped
over”’ the space between codewords

Sender: Network: Receiver:

00->0|

[——

Space between . 01

—— ———————

codewords: 10 |

11->1|

Hamming distance

Measures the number of bit flips to change one
codeword into another

Hamming distance between two messages m,, m,: The
number of bit flips needed to change m, into m,

Example: Two bit flips needed to change codeword 00 to

codeword 11, so they are Hamming distance of two apart:

00 > 01 | > 11

17

How many bit errors can we detect?

» Suppose the minimum Hamming distance between any
pair of codewords is d, ;.

* Then, we can detect at most d_, — 1 bit errors
— Wil land in space between codewords, as we just saw

2 bit errors

— Receiver will flag message as “Error detected”

18

Decoding error detecting codes

* The receiver decodes in a two-step process:

1. Map received bits > codeword
* Decoding rule: Consider all codewords

— Choose the one that exactly matches the
received bits

— Return “error detected” if none match

2. Map codeword - source bits and “error detected”
« Use the reverse map of the sender

19

A simple error-correcting code

» Let's look at a three-repetition code

* If no errors, it works like the two-repetition code:

Sender: Network: Receiver:

[0) ~» 000 > 000 ~> [0])
001] 001]
010] 010]
100 | 100 |
011] 011]
101] 101]
110] 110]

1] - | 111 —> 111 - [1])

20

Correcting one bit error

* Receiver chooses the closest codeword (measured by
Hamming distance) to the received bits

— A decision boundary exists halfway between codewords

Sender: Network: Receiver:

0|~ 000 > 000 I 0|
| N | N \
(001 } 001 ¥ NN
— - s) Fixerror
' 010 | 1 010 =~ J

Decision boundary

\
s~ | Fix error

U
4

= |1

21

Decoding error correcting codes

* The receiver decodes in a two-step process:

1. Map received bits > codeword
* Decoding rule: Consider all codewords

— Choose one with the minimum Hamming
distance to the received bits

2. Map codeword - source bits
« Use the reverse map of the sender

22

How many bit errors can we correct?

» Suppose there is at least d._ ., Hamming distance between

any two codewords Round
down

 Then, we can correct at most dnin =1 [“pit flips
2

— This many bit flips can’t move received bits closer to
another codeword, El8ger the decision boundary:

2 bit errors

D e e e :i:_'.\é_' —>
\ :“‘ f_,
E dmin=5

Decision boundary

23

Code rate

* Suppose codewords of length n, messages length k (k < n)
e The code rate R = k/n is a fraction between 0 and 1
 So, we have a tradeoft:

— High-rate codes (R approaching one) correct fewer errors,
but add less overhead

— Low-rate codes (R close to zero) correct more errors, but
add more overhead

24

Today

1. Error control codes
— Encoding and decoding fundamentals
— Measuring a code’s error correcting power
— Measuring a code’s overhead
— Practical error control codes
 Parity check, Hamming block code

2. Error detection codes
— Cyclic redundancy check (CRC)

25

Parity bit

» Given a message of k data bits D,, D, ..., D,, append a
parity bit P to make a codeword of length n = k + 1

— P is the exclusive-or of the data bits:
+P=D,®D,® - PD,

— Pick the parity bit so that total number of 1’s is even
k data bits parity bit
A

, e
011100 |1

26

Checking the parity bit

* Receiver: counts number of 1s in received message
— Even: received message is a codeword

— Odd: isn’t a codeword, and error detected
* But receiver doesn’t know where, so can’t correct

* What about d,;,?
— Change one data bit = change parity bit, so d,;, = 2
« So parity bit detects 1 bit error, corrects 0

« Can we detect and correct more errors, in general?

27

Two-dimensional parity

« Break up data into multiple rows |dis dip dis dig py |
— Start with normal parity within [d,, dyo dos s Py |
each row (p;) | |
— Do the same down columns (g) L1922 % % P
— Add a parity bit r covering row ldus doy dis do OO
arities *
P [0 % o a ¢ |

« This example has rate 16/25

pj=d.®d, ©d;; &d,
q; = d1,j ® d2,j @ d3,j @ d4,j

r= p; @©p,

D p;

@D p,

Two-dimensional parity: Properties

Flip 1 data bit, 3 parity bits flip ===
Flip 2 data bits, = 2 parity bits flip EX : FHCERE !' o 1]

Flip 3 data bits, = 3 parity bits flip [0y, 1dyy! dyy oyt Py !

Therefore, d....., =4, SO : —
— Can detegtms 3 bit errors [dus 1dsol dig it Pg !l

— Can correct single-bit errors (how?)

[E—— | Vo

2-D parity detects most four-bit errors

Block codes

« Let's fully generalize the parity bit for even more error
detecting/correcting power

« Split message into k-bit blocks, and add n—k parity bits
to the end of each block:

— This is called an (n, k) block code

k bits n—k bits
A, A

[\

‘ data bits ‘ parity bits

codeworYd: n bits

A higher rate error correcting code?

« What if we repeat the parity bit 3 x ? ‘ D,D,D.D, ‘ PPP ‘
-P=D, D, D;D,, R=4/7

— Flip one data bit, all parity bits flip. Sod,;, =47

* No! Flip another data bit, all parity bits flip back to
original values! So d;, = 2

— What happened? Parity checks either all failed or all
succeeded, giving no additional information

31

Hamming (7, 4) code

k=4 Dbits n- k=3 Dbits

A A

4

| D:0,DD, | PP |

3\

P, =D, @ D, D,
P,=D, & D,® D,
P;= ©&D,®D;&D,

Hamming (7, 4) code: d_...

Change one data bit, either:
> Two P, change, or
— Three P, change

Change two data bits, either:
> Two P, change, or
— One P; changes

d_.. = 3: Detect 2 bit errors, correct 1 bit error

Hamming (7, 4): Correcting One Bit Error

* Infer which corrupt bit from
which parity checks fail:

« P, and P, fail = Error in D,
« P, and P, fail = Errorin D,
« P,, P,, & P;fail = Errorin D,
* P,and P;fail= ErmorinD, p,:all -

What if just one parity check fails?

Summary: Higher rate (R = 4/7) code correcting one bit error

Today

1. Error control codes

2. Error detection codes
— Cyclic redundancy check (CRC)

35

Cyclic redundancy check (CRC)

* Most popular method error detecting code at L2
— Found in Ethernet, Wi-Fi, token ring, many many others

« Often implemented in hardware at the link layer

* Represent k-bit messages as degree k- 1 polynomials

— Each coefficient in the polynomial is either zero or
one, e.g.:

k = 6 bits of message

1 0 1 1 1 0

M(x)=1x>+0x*+ 13+ 1x?+1x+ 0

Modulo-2 Arithmetic

 Addition and subtraction are both exclusive-or without
carry or borrow

Multiplication example: Division example:

1101 1101
110 110%g%110
0000 9711
11010 110
110100 8%%
101110 170

110

37

CRC at the sender

* M(x) is our message of length k
—eg. . Mx)=x5+x3+x2+x (k=6) 101110

* Sender and receiver agree on a generator polynomial
G(x) of degree g = 1 (i.e., g bits)

—eg. GX)=x*+1 (g=4) [EIE]

1. Calculate padded message T(x) = M(x)-x9-1
— l.e., right-pad with g — 1 zeroes
—e.g.. TX)=MX)x3=x3+x0+ x>+ x*

101110]000]

38

CRC at the sender

2. Divide padded message 7(x) by generator G(x)
— The remainder R(x) is the CRC:

101011
1001]

-
Q

- | -
oO|o|o
_ | O= O —
=Tl [=T=][=1=d BV
_m OO |O—
D [OO O
OO |I00I00
DO
LY IRV .)

R(x)=x+1

39

CRC at the sender

3. The sender transmits codeword C(x) = T(x) + R(x)

— I.e., the sender transmits the original message with the
CRC bits appended to the end

— Continuing our example, C(x) =x3+ x5+ x>+ x* + x + 1

101110011

Properties of CRC codewords

 Remember: Remainder [7(x)/G(x)] = R(x)
« What happens when we divide C(x) / G(x)?
* C(x) = T(x) + R(x) so remainder is

— Remainder [T(x)/G(x)] = R(x), plus

— Remainder [R(x)/G(x)] = R(x)

— Recall, addition is exclusive-or operation, so:

« Remainder [C(x)/G(x) = R(x) + R(x) =0

41

Detecting errors at the receiver

« Divide received message C'(x) by generator G(x)
— If no errors occur, remainder will be zero

101 011

110) 011
1

0 0 0 & no error detected
42

Detecting errors at the receiver

« Divide received message C'(x) by generator G(x)
— If errors occur, remainder may be non-zero

101 011

11] 011

1
1

oo
(e] 5N

1
1

o0
QA

01
00

—_—

011
001

0100
0000

001
001
0 001 - error detected

_—

43

Detecting errors at the receiver

« Divide received message C'(x) by generator G(x)
— [f errors occur, remainder may be non-zero

101011
11010

—

0 000 - undetected error!

Detecting errors with the CRC

* The error polynomial E(x) = C(x) + C'(x) is the difference
between the transmitted and received codeword

— E(x) tells us which bits the channel flipped

* \We can write the received message C'(x) in terms of C(x)
and E(x): C'(x) = C(x) + E(x), so:
— Remainder [C'(x) / G(x)] = Remainder [E(x)/ G(x)]

 When does an error go undetected?
— When Remainder [E(x)/ G(x)]=0

45

Detecting single-bit errors w/CRC

« Suppose a single-bit error in bit-position i E(x) = x’

— Choose G(x) with = 2 non-zero terms: x9-1 and 1

— Remainder [x'/ (x97 1+ .-+ 1)]# 0, e.g.:
1

EXXEN|[001000

1001
1

* Therefore a CRC with this choice of G(x) always detects

single-bit errors in the received message

46

Error detecting properties of the CRC

* The CRC will detect:
All single-bit errors
 Provided G(x) has two non-zero terms
— All burst errors of length< g -1
 Provided G(x) begins with x9-1 and ends with 1
» Similar argument to previous property
— All double-bit errors

* With conditions on the frame length and choice of
G(x)
— Any odd number of errors

* Provided G(x) contains an even number of non-zero
coefficients

Error detecting code: CRC

* Farless overhead than error correcting codes
— Typically 16 to 32 bits on a 1,500 byte (12 Kbit) frame

* Error detecting properties are more complicated

— But in practice, “missed” bit errors are exceedingly rare

48

Friday Precept:
Work on Lab 2

Tuesday Topic:
Convolutional Codes

49

