Detecting and Correcting Bit Errors

COS 463: Wireless Networks
Lecture 8

Kyle Jamieson

Bit errors on links

- Links in a network go through hostile environments
 - Both wired, and wireless:

- Consequently, errors will occur on links
- Today: How can we detect and correct these errors?
- There is limited capacity available on any link
 - Tradeoff between link utilization & amount of error control

Today

1. Error control codes

- Encoding and decoding fundamentals
- Measuring a code's error correcting power
- Measuring a code's overhead
- Practical error control codes
 - Parity check, Hamming block code

2. Error detection codes

Cyclic redundancy check (CRC)

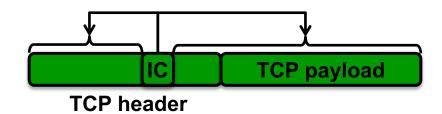
Where is error control coding used?

- The techniques we'll discuss today are pervasive throughout the internetworking stack
- Based on theory, but broadly applicable in practice, in other areas:
 - Hard disk drives
 - Optical media (CD, DVD, & c.)
 - Satellite, mobile communications

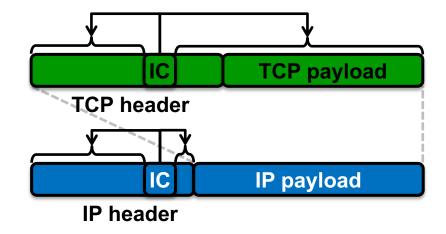
Application
Transport
Network
Link
Physical

 In 463, we cover the "tip of the iceberg" in the Internetworking stack

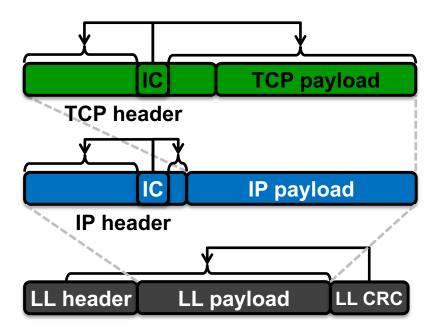
- Transport layer
 - Internet Checksum (IC)
 over TCP/UDP header, data



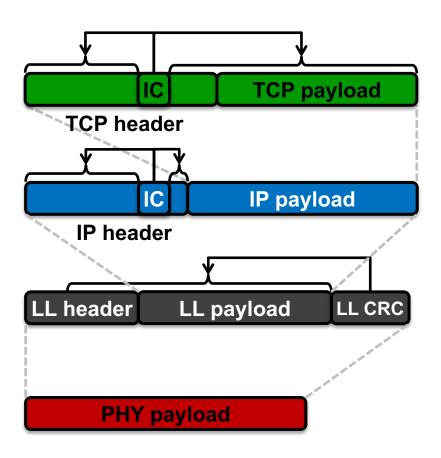
- Transport layer
 - Internet Checksum (IC)
 over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only



- Transport layer
 - Internet Checksum (IC)
 over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only
- Link layer (L2)
 - Cyclic Redundancy Check (CRC)



- Transport layer
 - Internet Checksum (IC)
 over TCP/UDP header, data
- Network layer (L3)
 - IC over IP header only
- Link layer (L2)
 - Cyclic Redundancy Check (CRC)
- Physical layer (PHY)
 - Error Control Coding (ECC), or
 - Forward Error Correction (FEC)



Today

1. Error control codes

- Encoding and decoding fundamentals
- Measuring a code's error correcting power
- Measuring a code's overhead
- Practical error control codes
 - Parity check, Hamming block code
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Error control: Motivation

- Every string of bits is an "allowed" message
 - Hence any changes to the bits (bit errors) the sender transmits produce "allowed" messages
- Therefore without error control, receiver wouldn't know errors happened!

Error control: Key Ideas

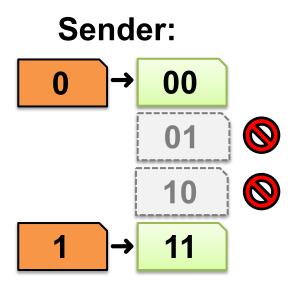
- Reduce the set of "allowed" messages
 - Not every string of bits is an "allowed" message
 - Receipt of a disallowed string of bits means that the message was garbled in transit over the network
- We call an allowable message (of n bits) a codeword
 - Not all n-bit strings are codewords!
 - The remaining *n*-bit strings are "space" between codewords
- Plan: Receiver will use that space to both detect and correct errors in transmitted messages

Encoding and decoding

- Problem: Not every string of bits is "allowed"
 - But we want to be able to send any message!
 - How can we send a "disallowed" message?
- Answer: Codes, as a sender-receiver protocol
 - The sender must *encode* its messages → codewords
 - The receiver then *decodes* received bits → messages
- The relationship between messages and codewords isn't always obvious!

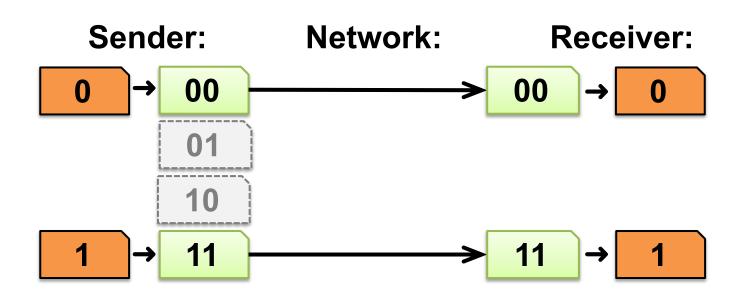
A simple error-detecting code

- Let's start simple: suppose messages are one bit long
- Take the message bit, and repeat it once
 - This is called a two-repetition code



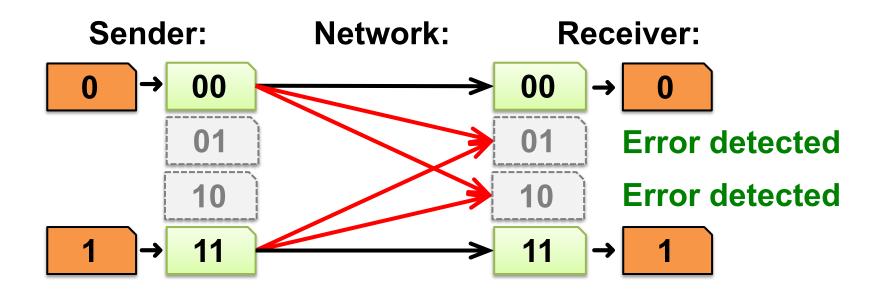
Receiving the two-repetition code

- Suppose the network causes no bit error
- Receiver removes repetition to correctly decode the message bits



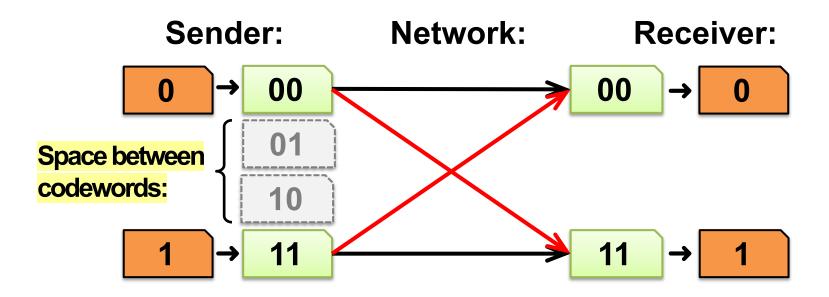
Detecting one bit error

- Suppose the network causes up to one bit error
- The receiver can detect the error:
 - It received a non-codeword
- Can the receiver correct the error?
 - No! The other codeword could have been sent as well



Reception with two bit errors

- Can receiver detect presence of two bit errors?
 - No: It has no way of telling which codeword was sent!
 - Enough bit errors that the sent codeword "jumped over" the space between codewords



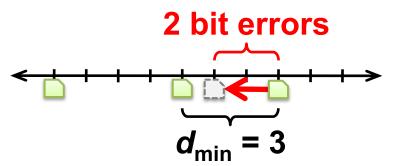
Hamming distance

- Measures the number of bit flips to change one codeword into another
- *Hamming distance* between two messages m_1 , m_2 : The number of bit flips needed to change m_1 into m_2
- **Example:** Two bit flips needed to change codeword 00 to codeword 11, so they are Hamming distance of two apart:

How many bit errors can we detect?

Suppose the minimum Hamming distance between any pair of codewords is d_{min}

- Then, we can detect at most d_{min} 1 bit errors
 - Will land in space between codewords, as we just saw



Receiver will flag message as "Error detected"

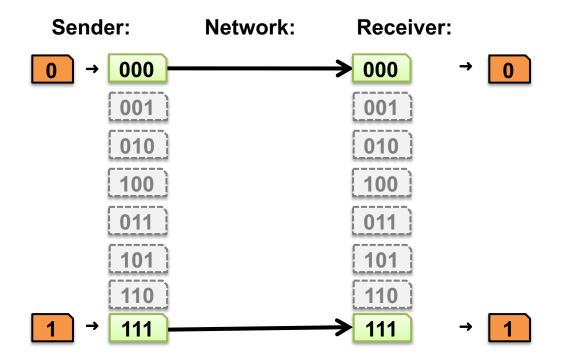
Decoding error detecting codes

- The receiver decodes in a two-step process:
 - 1. Map received bits → codeword
 - Decoding rule: Consider all codewords
 - Choose the one that exactly matches the received bits
 - Return "error detected" if none match

- 2. Map codeword → source bits and "error detected"
 - Use the reverse map of the sender

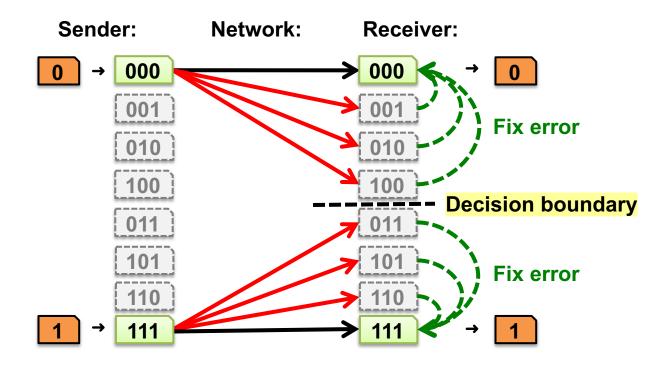
A simple error-correcting code

- Let's look at a three-repetition code
- If **no errors**, it works like the two-repetition code:



Correcting one bit error

- Receiver chooses the closest codeword (measured by Hamming distance) to the received bits
 - A decision boundary exists halfway between codewords



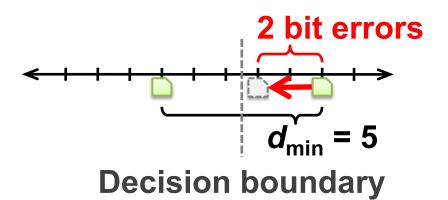
Decoding error correcting codes

- The receiver decodes in a two-step process:
 - 1. Map received bits → codeword
 - Decoding rule: Consider all codewords
 - Choose one with the minimum Hamming distance to the received bits

- 2. Map codeword → source bits
 - Use the reverse map of the sender

How many bit errors can we correct?

- Suppose there is at least d_{min} Hamming distance between any two codewords
- Then, we can correct at most $\left| \frac{d_{\min} 1}{2} \right|$ bit flips
 - This many bit flips can't move received bits closer to another codeword, across the decision boundary:



Code rate

- Suppose **codewords** of length n, **messages** length k (k < n)
- The code rate R = k/n is a fraction between 0 and 1
- So, we have a tradeoff:
 - High-rate codes (R approaching one) correct fewer errors,
 but add less overhead
 - Low-rate codes (R close to zero) correct more errors, but
 add more overhead

Today

1. Error control codes

- Encoding and decoding fundamentals
- Measuring a code's error correcting power
- Measuring a code's overhead
- Practical error control codes
 - Parity check, Hamming block code
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Parity bit

- Given a message of k data bits D₁, D₂, ..., D_k, append a parity bit P to make a codeword of length n = k + 1
 - P is the exclusive-or of the data bits:
 - $P = D_1 \oplus D_2 \oplus \cdots \oplus D_k$
 - Pick the parity bit so that total number of 1's is even

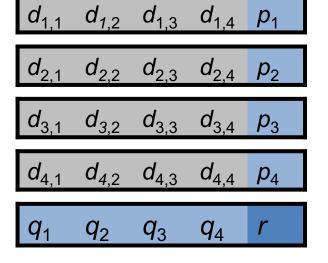
k data bits parity bit
011100 1

Checking the parity bit

- Receiver: counts number of 1s in received message
 - Even: received message is a codeword
 - Odd: isn't a codeword, and error detected
 - But receiver doesn't know where, so can't correct
- What about d_{\min} ?
 - Change one data bit \rightarrow change parity bit, so $d_{\min} = 2$
 - So parity bit detects 1 bit error, corrects 0
- Can we detect and correct more errors, in general?

Two-dimensional parity

- Break up data into multiple rows
 - Start with normal parity within each row (p_i)
 - Do the same **down columns** (q_i)
 - Add a parity bit *r* covering row parities



This example has rate 16/25

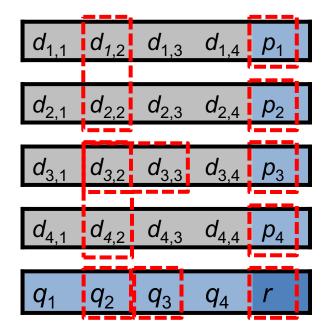
$$p_{j} = d_{j,1} \oplus d_{j,2} \oplus d_{j,3} \oplus d_{j,4}$$

$$q_{j} = d_{1,j} \oplus d_{2,j} \oplus d_{3,j} \oplus d_{4,j}$$

$$r = p_{1} \oplus p_{2} \oplus p_{3} \oplus p_{4}$$

Two-dimensional parity: Properties

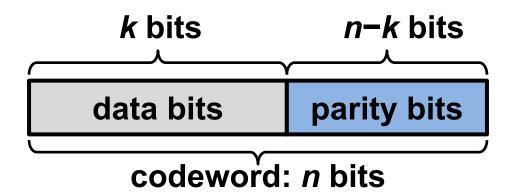
- Flip 1 data bit, 3 parity bits flip
- Flip 2 data bits, ≥ 2 parity bits flip
- Flip 3 data bits, ≥ 3 parity bits flip
- Therefore, d_{min} = 4, so
 - Can detect ≤ 3 bit errors
 - Can correct single-bit errors (how?)



• 2-D parity detects **most** four-bit errors

Block codes

- Let's fully generalize the parity bit for even more error detecting/correcting power
- Split message into k-bit blocks, and add n-k parity bits to the end of each block:
 - This is called an (n, k) block code



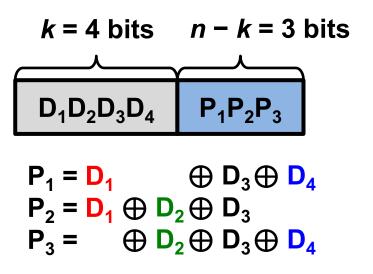
A higher rate error correcting code?

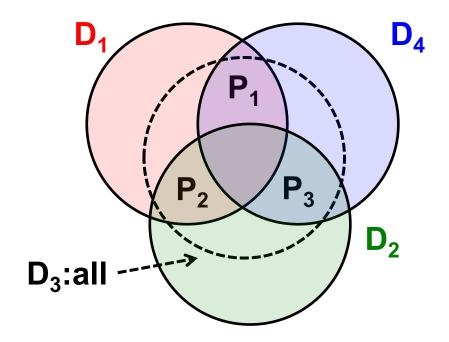
What if we repeat the parity bit 3 × ?

 $D_1D_2D_3D_4$ PPP

- $-P = D_1 \oplus D_2 \oplus D_3 \oplus D_4$; R = 4/7
- Flip one data bit, all parity bits flip. So $d_{min} = 4$?
 - No! Flip another data bit, all parity bits flip back to original values! So d_{min} = 2
- What happened? Parity checks either all failed or all succeeded, giving no additional information

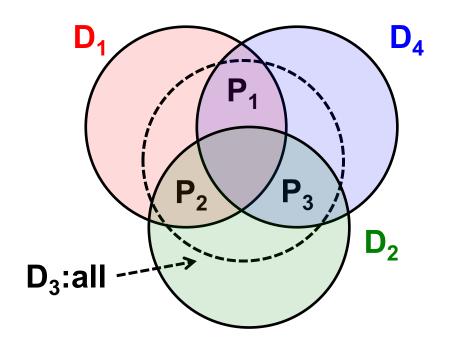
Hamming (7, 4) code





Hamming (7, 4) code: d_{min}

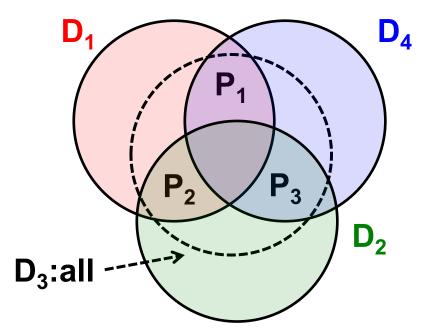
- Change one data bit, either:
 - \Rightarrow Two P_i change, or
 - Three P_i change
- Change two data bits, either:
 - \Rightarrow Two P_i change, or
 - One P_i changes



 d_{\min} = 3: Detect 2 bit errors, correct 1 bit error

Hamming (7, 4): Correcting One Bit Error

- Infer which corrupt bit from which parity checks fail:
- P_1 and P_2 fail \Rightarrow Error in D_1
- P_2 and P_3 fail \Rightarrow Error in D_2
- P_1 , P_2 , & P_3 fail \Rightarrow Error in D_3
- P₁ and P₃ fail ⇒ Error in D₄



What if just one parity check fails?

Summary: Higher rate (R = 4/7) code correcting one bit error

Today

- 1. Error control codes
- 2. Error detection codes
 - Cyclic redundancy check (CRC)

Cyclic redundancy check (CRC)

- Most popular method error detecting code at L2
 - Found in Ethernet, Wi-Fi, token ring, many many others
- Often implemented in hardware at the link layer
- Represent k-bit messages as degree k 1 polynomials
 - Each coefficient in the polynomial is either zero or one, e.g.:

$$k = 6$$
 bits of message

$$1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0$$

$$M(x) = 1x^5 + 0x^4 + 1x^3 + 1x^2 + 1x + 0$$

Modulo-2 Arithmetic

Addition and subtraction are both exclusive-or without carry or borrow

Multiplication example:

$$\begin{array}{r}
 1101 \\
 \hline
 0000 \\
 11010 \\
 \hline
 10110 \\
 \hline
 101110
 \end{array}$$

Division example:

CRC at the sender

- M(x) is our message of length k
 - $-e.g.: M(x) = x^5 + x^3 + x^2 + x (k = 6)$

101110

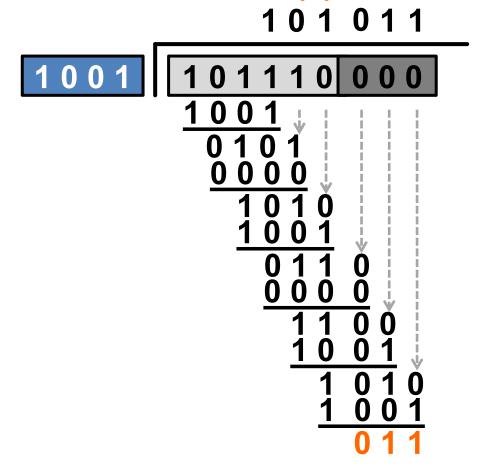
- Sender and receiver agree on a generator polynomial G(x) of degree g - 1 (i.e., g bits)
 - $-e.g.: G(x) = x^3 + 1 (g = 4)$ 1001

- 1. Calculate padded message $T(x) = M(x) \cdot x^{g-1}$
 - -i.e., right-pad with g-1 zeroes
 - $-e.g.: T(x) = M(x) \cdot x^3 = x^8 + x^6 + x^5 + x^4$

101110000

CRC at the sender

- 2. Divide padded message T(x) by generator G(x)
 - The remainder R(x) is the CRC:



$$R(x) = x + 1$$

CRC at the sender

- 3. The sender transmits codeword C(x) = T(x) + R(x)
 - i.e., the sender transmits the original message with the CRC bits appended to the end
 - Continuing our example, $C(x) = x^8 + x^6 + x^5 + x^4 + x + 1$

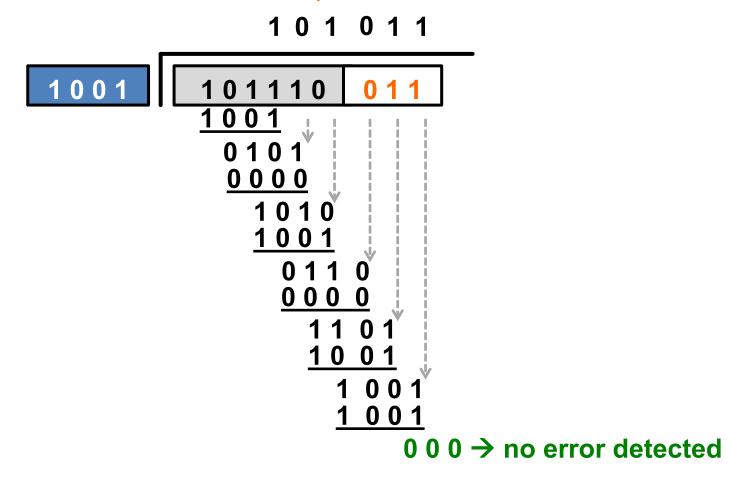
101110011

Properties of CRC codewords

- Remember: Remainder [T(x)/G(x)] = R(x)
- What happens when we divide C(x) / G(x)?
- C(x) = T(x) + R(x) so remainder is
 - Remainder [T(x)/G(x)] = R(x), plus
 - Remainder [R(x)/G(x)] = R(x)
 - Recall, addition is exclusive-or operation, so:
 - Remainder [C(x)/G(x)] = R(x) + R(x) = 0

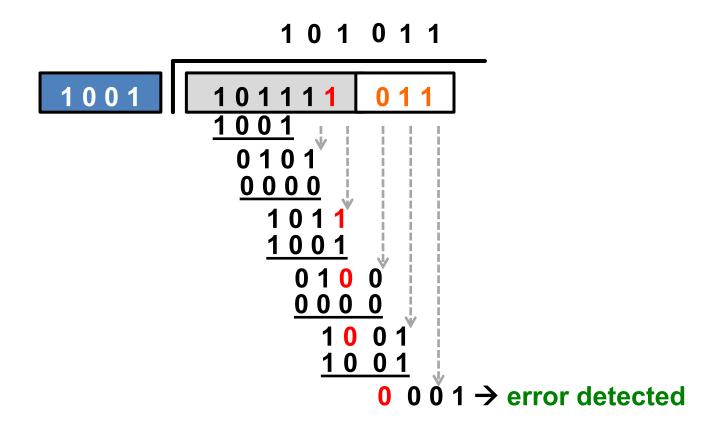
Detecting errors at the receiver

- Divide received message C'(x) by generator G(x)
 - If no errors occur, remainder will be zero



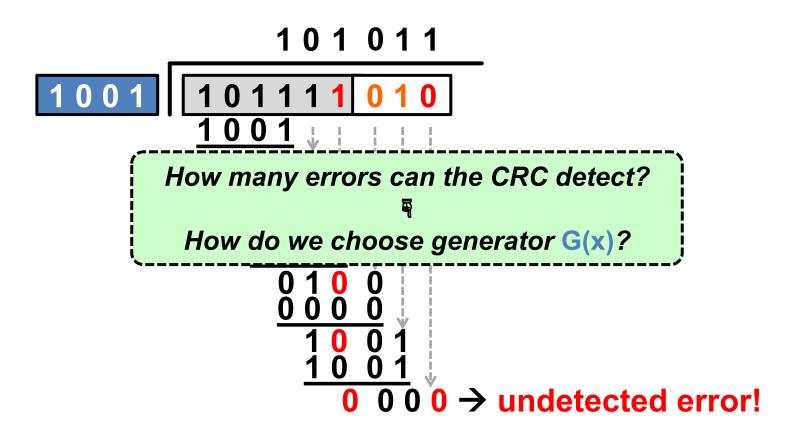
Detecting errors at the receiver

- Divide received message C'(x) by generator G(x)
 - If errors occur, remainder may be non-zero



Detecting errors at the receiver

- Divide received message C'(x) by generator G(x)
 - If errors occur, remainder may be non-zero

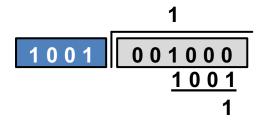


Detecting errors with the CRC

- The error polynomial E(x) = C(x) + C'(x) is the difference between the transmitted and received codeword
 - -E(x) tells us which bits the channel flipped
- We can write the received message C'(x) in terms of C(x) and E(x): C'(x) = C(x) + E(x), so:
 - Remainder [C'(x) / G(x)] = Remainder [E(x) / G(x)]
- When does an error go undetected?
 - When **Remainder** [E(x) / G(x)] = 0

Detecting single-bit errors w/CRC

- Suppose a single-bit error in bit-position i: E(x) = xⁱ
 - Choose G(x) with ≥ 2 non-zero terms: x^{g-1} and 1
 - Remainder [x^i / (x^{g-1} + ··· + 1)] ≠ 0, e.g.:



 Therefore a CRC with this choice of G(x) always detects single-bit errors in the received message

Error detecting properties of the CRC

The CRC will detect:

All single-bit errors

- Provided G(x) has two non-zero terms
- All burst errors of length ≤ g 1
 - Provided G(x) begins with x^{g-1} and ends with 1
 - Similar argument to previous property
- All double-bit errors
 - With conditions on the frame length and choice of G(x)
- Any odd number of errors
 - Provided G(x) contains an even number of non-zero coefficients

Error detecting code: CRC

- Far less overhead than error correcting codes
 - Typically 16 to 32 bits on a 1,500 byte (12 Kbit) frame
- Error detecting properties are more complicated
 - But in practice, "missed" bit errors are exceedingly rare

Friday Precept: Work on Lab 2

Tuesday Topic: Convolutional Codes