Wireless Mesh Networks

COS 463: Wireless Networks Lecture 6

Kyle Jamieson

[Parts adapted from I. F. Akyildiz, B. Karp]

Wireless Mesh Networks

- Describes wireless networks in which each node can communicate directly with any other node
- Traditional wireless network traffic goes through APs
- Mesh networks: Remove this restriction
 - Multiple paths: Mesh

Distance Vector & Link State Routing

- Both assume each router knows single-hop routing information:
 - Address of each neighbor
 - Cost of reaching each neighbor (metric)
- Distance Vector: Router knows just the metric to each destination
- Link State: Router knows entire network topology, computes shortest path to each destination

Today

- 1. Distance Vector Routing
 - New node join
 - Broken link
 - Route changes
- 1. Destination Sequenced Distance-Vector Routing (DSDV)
- 2. Dynamic Source Routing (DSR)
- 3. Roofnet

Distance Vector Routing

- Every node maintains a routing table
 - For each destination in the mesh:
 - The number of hops to reach the destination (metric)
 - The next node on the path towards the destination
- All nodes periodically, locally broadcast their routing table
 Traffic overhead due to broadcasting

• **D** joins the network

- **D** joins the network
- D's broadcast first updates C's table with new entry for D

- Now **C** broadcasts its routing table
 - B and D hear and add new entries, incrementing metric (hops)

- Now **B** broadcasts its routing table
 - A and C hear and add new entries, incrementing metric (hops)

Today

1. Distance Vector Routing

- New node join
- Broken link
- Route changes
- 1. Destination Sequenced Distance-Vector Routing (DSDV)
- 2. Dynamic Source Routing (DSR)
- 3. Roofnet

Distance Vector – Broken Link

• Suppose link $C \leftrightarrow D$ breaks

Distance Vector – Broken Link

1. C hears no advertisement from D for a timeout period

- C sets D's metric to ∞

Distance Vector – Broken Link

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
 - C now accepts B's entry for D ($3 < \infty$)

Broken Link: Counting to Infinity

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
- 3. C broadcasts its routing table
 - **B accepts C's new metric** (previous next-hop: **C**)

Broken Link: Counting to Infinity

- 1. C sets D's metric to ∞
- 2. B broadcasts its routing table
- 3. C broadcasts its routing table
- 4. B broadcasts its routing table
 - A, C accept B's new metric (previous next-hops: B)

Today

1. Distance Vector Routing

- New node join
- Broken link
- Route changes
- 1. Destination Sequenced Distance-Vector Routing (DSDV)
- 2. Dynamic Source Routing (DSR)
- 3. Roofnet

Distance Vector – Route Change

• D moves to another place and broadcast its routing table

Distance Vector – Route Change

• D moves to another place and broadcast its routing table

Distance Vector – Route Change

- D moves to another place and broadcast its routing table
- **B** broadcast its routing table

Today

- 1. Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV) – New node join
 - Broken link
 - Route advertisement
- 3. Dynamic Source Routing (DSR)
- 4. Roofnet

Destination Sequenced Distance-Vector (DSDV) Routing

- Guarantees loop freeness
- New routing table information: Sequence number
- 1. Per-destination information
- 2. Originated by destination
- 3. Included in routing advertisements

Destination	Next	Metric	Seq. Nr
Α	A	0	550
В	В	1	102
C	В	3	588
D	В	4	312

DSDV: Route Advertisement Rule

• Rules to set sequence number:

- Just before **node N**'s broadcast advertisement:
 - Node N sets:
 - Seq(N) \leftarrow Seq(N) + 2

- Node N thinks neighbor P is no longer directly reachable
 - **Node N** sets:
 - Seq(P) ← Seq(P) + 1
 - Metric(P) $\leftarrow \infty$

- **D** joins the network
- D's broadcast first updates C's table with new entry for D

Today

- 1. Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
 - New node join
 - Broken link
 - Route advertisement
- 3. Dynamic Source Routing (DSR)
- 4. Roofnet

DSDV – Broken Link

Suppose link C ← → D breaks

DSDV – Broken Link

DSDV: Routing Table Update Rule

• Rules to update routing table entry:

- Node N gets routing advertisement from neighbor Node P:
 - Update routing table entry for node E when:
 - Seq(E) in P's advertisement > Seq(E) in N's table

DSDV – Broken Link

• **B** next broadcasts its routing table

No affect on <u>C's entry for D</u> (because 001 > 000)

• No loop \rightarrow no count to infinity

Today

- 1. Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
 - New node join
 - Broken link
 - Route advertisement
- 3. Dynamic Source Routing (DSR)
- 4. Roofnet

Distance Vector – Route Advertisement

• D moves to another place and broadcasts its routing table

Distance Vector – Route Advertisement

- D moves to another place and broadcasts its routing table
- **B** broadcasts its routing table

34

Today

- 1. Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)
- 4. Roofnet

Dynamic Source Routing (DSR)

- No periodic "beaconing" from all nodes
- When node S wants to send a packet to node D (but doesn't know a route to D), S initiates a route discovery
- S network-floods a *Route Request (RREQ)*
 - Each node appends its own id when forwarding RREQ

Represents a node that has received RREQ for D from S

------> Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

•••••• Represents transmission of RREQ

[X,Y] Represents list of identifiers appended to RREQ

------> Represents transmission of RREQ

 Node C receives RREQ from G and H, but does not forward it again, because node C has already forwarded RREQ once

Represents transmission of RREQ

- Nodes J and K both broadcast RREQ to node D
- Since nodes J and K are hidden from each other, their transmissions may collide

Represents transmission of RREQ

• Node D does not forward RREQ, because node D is the intended target of the route discovery

Route Reply in DSR

- On receiving first RREQ, D sends a Route Reply (RREP)
 - RREP sent on route obtained by reversing the route in the received RREQ
 - RREP includes the route from S to D over which D received the RREQ

Dynamic Source Routing (DSR)

- On receiving RREP, **S** caches route included therein
- When S sends a data packet to D, includes entire route in packet header
- Intermediate nodes use the source route included in packet to determine to whom packet should be forwarded

Today

- 1. Distance Vector Routing
- 2. Destination Sequenced Distance-Vector Routing (DSDV)
- 3. Dynamic Source Routing (DSR)

4. Roofnet

- Wireless mesh link measurements
- Routing and bit rate selection
- End-to-end performance evaluation

Context, ca. 2000-2005

- Mobile ad hoc networking research
 - Mobile, hence highly dynamic topologies
 - Chief metrics: routing protocol overhead, packet delivery success rate, hop count
 - Largely evaluated in simulation
- Roofnet, a real mesh network deployment
 - Fixed, PC-class nodes
 - Motivation: shared Internet access in community
 - Chief metric: TCP throughput
 - "Test of time" system, led to Cisco Meraki

Roofnet: Design Choices

- 1. Volunteer users host nodes at home
 - Open participation without central planning
 - No central control over topology
- Omnidirectional rather than directional antennas
 Ease of installation: no choice of neighbors/aiming
 Links interfere, likely low quality
- 3. Multi-hop routing (not single-hop hot spots)
 - Improved coverage (path diversity)
 - Must build a routing protocol
- 4. Goal: high TCP throughput

Roofnet: Goals and non-goals

 Each part of the mesh architecture had been previously examined in isolation

• Paper contribution: A systematic evaluation of whether architecture can achieve goal of providing Internet access

- Stated non-goals for paper:
 - Throughput of multiple concurrent flows
 - Scalability in number of nodes
 - Design of routing protocols

Roofnet deployment

• Each node: PC, 802.11b card, roof-mounted omni antenna

Hardware design

- PC Ethernet interface provides wired Internet for user
- Omnidirectional antenna in **azimuthal** direction
 - 3 dB vertical beam width of 20 degrees
 - Wide beam sacrifices gain but removes the need for perfect vertical antenna orientation
- 802.11b radios (*Intersil Prism 2.5* chipset)
 - 200 mW transmit power
 - All share same 802.11 channel (frequency)

Internet gateways

- Node sends DHCP request on Ethernet then tests reachability to Internet hosts
 - Success indicates node is an Internet gateway
 - Gateways translate between Roofnet and Internet IP address spaces
- Roofnet nodes track gateway used for each open TCP connection they originate
 - If best gateway changes, open connections continue to use gateway they already do
- If a Roofnet gateway fails, existing TCP connections through that gateway will fail

Example: Varying link loss rates

- $A \rightarrow C$: 1 hop; high loss
- $A \rightarrow B \rightarrow C$: 2 hops; lower loss
- But **does this happen** in practice?

Hop count and throughput (1)

Hop count and throughput

- Two-hop path is suboptimal
- Some 3-hop paths better, some worse than 2-hop

Link loss is high and asymmetric

- Vertical bar ends = loss rate on 1 link in each direction
- Many links asymmetric and very lossy in ≥ 1 way
- Wide range of loss rates

Routing protocol: Srcr

- Each link has an associated *metric* (not necessarily 1!)
- Data packets contain source routes
- Nodes keep database of link metrics
 - Nodes write current metric into source route of all forwarded packets
 - DSR-like: Nodes flood route queries when they can't find a route; queries accumulate link metrics
 - Route queries contain route from requesting node
 - Nodes cache overheard link metrics
- Dijkstra's algorithm computes source routes

Link metric: Strawmen

- Discard links with loss rate above a threshold?
 Risks unnecessarily disconnecting nodes
- Product of link delivery rates \rightarrow prob. of e2e delivery?
 - Ignores inter-hop interference
 - Prefers 2-hop, 0% loss route over 1-hop, 10% loss route (but latter is **double throughput**)
- Throughput of highest-loss link on path?
 - Also ignores inter-hop interference

ETX: Expected Transmission Count

- Link ETX: predicted number of transmissions

 Calculate link ETX using forward, reverse delivery rates
 - To avoid retry, data packet and ACK must succeed
 - Link ETX = 1 / $(d_f \times d_r)$
 - d_f = forward link delivery ratio (data packet)
 - *d_r* = reverse link delivery ratio (ack packet)

• *Path ETX:* sum of the link ETX values on a path

Measuring link delivery ratios

- Nodes periodically send broadcast probe packets
 - All nodes know the sending period of probes
 - All nodes compute loss rate based on how many probes arrive, per measurement interval
- Nodes enclose these loss measurements in their transmitted probes

- e.g. B tells node A the link delivery rate from A to B

Multi-bitrate radios

- ETX assumes all radios run at same bit-rate
 - But 802.11b rates: {1, 2, 5.5, 11} Mbit/s

- Can't compare two transmissions at 1 Mbit/s with two at 2 Mbit/s
- Solution: Use expected time spent on a packet, rather than transmission count

ETT: Expected Transmission Time

• ACKs always sent at 1 Mbps, data packets 1500 bytes

Nodes send 1500-byte broadcast probes at every bit rate *b* to compute *forward link delivery rates d_f(b)* – Send 60-byte (min size) probes at 1 Mbps → *d_r*

- At each bit-rate b, $ETX_b = 1 / (d_f(b) \times d_r)$
- For packet of length S, $ETT_b = (S / b) \times ETX_b$
- Link ETT = $\min_b (ETT_b)$

ETT: Assumptions

• Path throughput estimate *t* is given by

 $- t_i$ = throughput of hop *i*

- *Does ETT maximize throughput?* No!
- Underestimates throughput for long (≥ 4-hop) paths
 Distant nodes can send simultaneously
- 2. Overestimates throughput when transmissions on different hops collide and are lost

Roofnet evaluation

- TCP bulk transfers between all node pairs but always a single flow at a time
 - But background traffic present: users always active
- Results:
 - 1. Wide spread of end-to-end throughput across pairs
 - 2. "Chain forwarding" indeed creates interference
 - 3. Lossy links indeed useful in practice

Wireless Mesh Networks: Evolving Routing

DSDV took DV out of wired (more static) networks
 Better coped with dynamism

• DSR addressed protocol overheads of routing

ETX and ETT abolished hop-count as a viable metric

 Replaced it with throughput as the metric