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Medium access: Timeline



1. MACA
– Carrier sense in the wireless medium
– Hidden and exposed terminal problems

2. MACAW

3. 802.11 MAC layer
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Today: Wi-Fi Above the PHY
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Fundamentals: Spectrum and Capacity
• A particular radio transmits over some range of frequencies; its 

bandwidth, in the physical sense

• When we’ve many senders near one another, how do we 
allocate spectrum among senders? Goals:
– Support for arbitrary communication patterns
– Simplicity of hardware
– Robustness to interference

• Shannon’s Theorem: there’s a fundamental limit to channel 
capacity over a given spectrum range



• Suppose we have 100 MHz of spectrum to use for a 
wireless LAN

• Strawman: Subdivide into 50 channels of 2 MHz each: 
FDMA, narrow-band transmission
– Radio hardware simple, channels don’t mutually 

interfere, but

– Multi-path fading (mutual cancellation of out-of-phase 
reflections)

– Base station can allocate channels to users.  How do 
you support arbitrary communication patterns?
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Multi-channel
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Idea: Use a single, shared channel
• Spread transmission across whole 100 MHz of spectrum

– Remove constraints assoc. w/one channel per user

– Robust to multi-path fading
• Some frequencies likely to arrive intact

– Supports peer-to-peer communication

• Collisions: Receiver must hear ≤1 strong transmission at a time

• So adopt carrier sense and deference from Ethernet
– Listen before sending, defer to ongoing



• Assumptions
– Uniform, circular radio propagation

• Fixed transmit power, all same ranges
– Equal interference and transmit ranges

• Goals
– Fairness in sharing of medium
– Efficiency (total bandwidth achieved)
– Reliability of data transfer at MAC layer
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Assumptions and goals

Radios modeled as “conditionally connected” 
wires based on circular radio ranges



Concurrency versus Taking Turns
• Far-apart links should send concurrently:

• Nearby links should take turns:
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When Does CS Work Well?
• Two transmission pairs are far away from each other
– Neither sender carrier-senses the other 
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AB CD

B transmits to A, while D transmits to C.



When Does CS Work Well?
• Both transmitters can carrier sense each other

– Carrier sense uses thresholded correlation value to 
determine if medium occupied
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AB
CD

B transmits to A, D transmits to C, taking turns.

But what about cases in 
between these extremes?
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Hidden Terminal Problem

• C can’t hear A, so will transmit while A transmits
– Result: Collision at B

• Carrier Sense insufficient to detect all transmissions on 
wireless networks!

• Key insight: Collisions are spatially located at the 
receiver

A B C
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Exposed Terminal Problem

• If C transmits, does it cause a collision at A?
– Yet C cannot transmit while B transmits to A!

• Same insight: Collisions spatially located at receiver

• One possibility: directional antennas rather than 
omnidirectional. Why does this help? Why is it hard?

A B C



MACA: Multiple Access
with Collision Avoidance
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• Carrier sense became adopted in packet radio

• But distances (cell size) remained large

• Hidden and Exposed terminals abounded

• Simple solution: use receiver’smedium state to 
determine transmitter behavior



RTS/CTS

15

• Exchange of two short messages: Request to Send (RTS) 
and Clear to Send (CTS)

• Algorithm
1. A sends an RTS (tells B to prepare)
2. B replies an CTS (echoes message length)
3. A sends its Data

A B C
1. “RTS, k bits”

2. “CTS, k bits”

defers
3. “Data”



Deference to CTS
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• Hear CTS à Defer for length of expected data 
transmission time

– Solves hidden terminal problem

A B C
1. “RTS, k bits”

2. “CTS, k bits”

defers
3. “Data”



Deference to RTS
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• Hear RTS à Defer one CTS-time (why?)

• MACA: No carrier sense before sending!
– Karn concluded useless because of hidden terminals

• So exposed terminals can transmit concurrently:

A B C
1. “RTS, k bits”

2. “CTS, 
k bits”

3. “Data” D
(No deference 
after Step 2)



Collision!
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• A’s RTS collides with C’s RTS, both are lost at B
• B will not reply with a CTS

• Might collisions involving data packets occur?
– Not according to our (unrealistic) assumptions
– But Karn acknowledges interference range > 

communication range

A B C
RTS RTSCollision
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BEB in MACA
• When collisions arise, MACA senders randomly 

backoff like Ethernet senders then retry the RTS

• How long do collisions take to detect in the 
Experimental Ethernet?

• What size should we make MACA backoff slots?
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BEB in MACA
• Current backoff constant: CW

• MACA sender:
– CW0 = 2 and CWM = 64
– Upon successful RTS/CTS, CW ß CW0
– Upon failed RTS/CTS, CW ß min[2CW, CWM]

• Before retransmission, wait a uniform random number of 
RTS lengths (30 bytes) in [0, CW]
– 30 bytes = 240 μs



1. MACA

2. MACAW

3. 802.11 MAC layer
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Today: Wi-Fi Above the PHY
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MACAW: Context
• Published in SIGCOMM 1994, work ’93/’94

• Wi-Fi standards proceeded in parallel (IEEE standard ‘97)
– 802.11 draws on MACAW, which draws on MACA

• Assumptions and goals: Same as MACA

• Setting: Wireless LAN
– Packet radio cell size: circa 100 mi. (528 μs)
– Wireless LAN cell size: circa 100 ft. (100 ns)
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Fairness in BEB/MACA
• MACA’s BEB can lead to unfairness: backed-off sender has 

decreasing chance to acquire medium (“the poor get poorer”)

• Simple example: A, C each sending at a rate that can alone 
saturate the network

• C more likely to win the backoff and set minimum CW=2

• A more likely to defer (maintain CW) 

A
CW=32

B C
CW=4



24

BEB in MACAW: Copy
• MACAW proposal: senders write their CW into packets

– Upon hearing a packet, copy and adopt its CW

• Result: Dissemination of congestion level of “winning” 
transmitter to its competitors

• Is this a good idea?

• RTS failure rate at one node propagates far and wide
– Ambient noise? Regions with different loads?



• Integrates with MACAW’s ACK mechanism

• Multiplicative increase, linear decrease (MILD)

• MACAW sender:
– CW0 = 2 and CWM = 64
– Upon failed RTS/CTS

• CW ß min[1.5CW, CWM]
– Upon successful RTS/CTS but failed ACK, no change
– Upon successful RTS/CTS/DATA/ACK

• CW ß CW−1
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BEB in MACAW



• MACAW introduces an ACK after DATA packets; not in 
MACA

• Sender resends if RTS/CTS succeeds but no ACK returns

• Sender resends RTS.  Two cases:

1. DATA was lost
– Receiver sends CTS, sender DATA

2. Receiver already has the DATA (reverse-link ACK loss)
– Receiver sends ACK
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Reliability: ACK



• Avoid TCP window reductions when interference

• Useful when there’s ambient noise (microwave ovens…)

• Why are sequence numbers in DATA packets now 
important (not mentioned directly in paper!)

• Are ACKs useful for multicast packets? Consequences for, 
e.g., ARP?
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ACK: Considerations



• C can proceed only if it can hear a CTS from D
– But B’s DATA will likely clobber

• So B sends a Data Sending (DS) packet after CTS
– So C knows that B received a CTS

• C defers until after ACK
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MACAW and Exposed Terminals

A B C
1. “RTS, k bits”

2. “CTS, 
k bits”

D

3. “DS”
Defer

4. “Data”

5. “ACK”

Conservative: Doesn’t leverage exposed 
terminal opportunities for concurrency



Need for Synchronization
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• Suppose D has a smaller CW, ongoing transmission
• B can not reply to A’s RTS
• A doesn’t know when the contention periods are

• So, A’s backoff will increase: unfair

• MACAW’s approach: let B contend “on behalf of” A

A B C D



MACAW: RRTS
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• But B knows when the gaps for contention are
• B sends a Request for RTS (RRTS) packet to A when 

DATA completes (hears an ACK from C)
• C defers transmissions for two slot periods (why?)
• A sends a RTS immediately without backoff

A B C D

RRTS

RTS

CTS

DATA



A Problem not Solved by RRTS
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• What happens in this scenario?
– Assume C is successful, ongoing transmission
– When A sends RTS to B, B just can’t hear it
– So this problem is not solved by RRTS

A B C D



1. MACA

2. MACAW

3. 802.11 MAC layer
– Contention and backoff
– Frame aggregation
– Selective retransmission and Acknowledgement
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Today: Wi-Fi Above the PHY



• Adopts MACAW’s MAC from a high level:
– Same RTS/CTS/DATA/ACK

• RTS/CTS optional
– Different contention window control

• Adopts CS and Deference from Ethernet:
– But not collision detection

• Transmit signal power ≫ receive signal power

• Adds design elements for high data rates, TCP above
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802.11’s MAC



• Fixed-time deference + CS = prioritization (DIFS > SIFS)

• So, overhead of fixed time duration per Wi-Fi Frame:
– RTS/CTS (if present), DIFS, CW, preamble, SIFS, ACK

Overhead Overhead
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Deference times for Prioritization

Distributed Coordination Function 
(DCF) Interframe Space (DIFS)

CW

Data

Short Interframe 
Space (SIFS)

ACK

Sender:

Receiver:

802.11 ac: SIFS = 16 μs, DIFS = 34 μs



Backoff: Pausing and Resuming
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data

wait
B1 = 5

B2 = 15

data

wait

B1 and B2 are backoff intervals
at nodes 1 and 2CW = 31

B2 = 10

• 802.11 backoff slot time = Physical CS time + 
propagation time + time to switch radio from 
receive to transmit

• No MACAW: No “copy,” no MILD, no DS, no RRTS

B1 = 25

B2 = 20

Node 1:

Node 2:

802.11 ac:
slot time = 9 μs

pause @ 5



• Adaptively sets CW with BEB
– Start with CW = 31, double if no CTS or ACK received
– Reset to 31 on successful transmission

• Not fair in the short term
– Under contention, losers will use larger CW than 

winners (winners reset)
– Winners may be able to transmit several packets while 

unlucky nodes are still counting down

• Could adopt MACAW’s copy & MILD, but has drawbacks
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802.11’s Pause



1. MACA

2. MACAW

3. 802.11 MAC layer
– Contention and backoff
– Frame aggregation
– Selective retransmission and Acknowledgement
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Today: Wi-Fi Above the PHY



Motivation: MAC Scaling
Incommensurate with PHY Bitrate
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1%

8%

29%

45%

73%

Preamble
(% overhead)

Payload (1,500 byte packet)

6 Mbps
(20 MHz, 1 x 1)

54 Mbps
(20 MHz, 1 x 1)

130 Mbps
(20 MHz, 2 x 2)

270 Mbps
(40MHz, 2 x 2)

540 Mbps
(40 MHz, 4 x 4)

Problem: Drop in efficiency with increasing data rate from 
fixed overheads in the preamble and inter-frame spaces



Aggregation Amortizes Fixed Overheads
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DIFS

CW

Data

SIFS

ACK

DIFS

CW

Data

SIFS

ACK

DIFS

CW

Data

SIFS

ACK

…...

DIFS

CW

Data Data Data

SIFS

BA

DIFS

CW

Data Data Data

SIFS

BA

• Without aggregation:

• With aggregation: Multiple frames/channel acquisition
– Block ack (BA) tells sender which arrived
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802.11: Selective Retransmission
• 802.11 adopts TCP’s selective retransmission, but:

– Primary consideration is performance at the link layer
– Protocol is only semi-reliable: may drop packets

• Receiver-side reorder buffer for in-order delivery

• Receiver-side scoreboard for feedback to sender

• Sender transmits Block ACK request (BAR) frames:
1. If needed, sender can solicit a Block ACK response 

(BA response) from receiver

2. Sender may direct receiver to drop (i.e., fail to deliver 
to the network layer) frames it deems old



• Like TCP, 802.11’s reorder buffer guarantees in-order 
delivery to the layer above

• But at most once instead of exactly-once semantics
41

Reorder Buffer Operation

Deliver
6 5 4 3 2 1

BA

hole

Reorder buffer
6521 3

8 7 4

654 7 8

sender receiver



• On receiving a BAR containing starting sequence number SSN:
– Deliver all frames with sequence number < SSN
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Flushing the Reorder Buffer
Deliver

6 5 4 3 2 1

BA

hole

Reorder buffer
6521 3

8 7 4

65 7 8BA

BAR: SSN=8

65 7 8

sender receiver

4 stale!



• Each bit in BA frame scoreboard bitmap corresponds to receipt 
of frames in [WinStart, WinEnd) interval

• Data and BAR frames move the scoreboard
43

The Scoreboard

0
212−1

WinStartWinStart 
+ 211

WinEnd
sc

ore
boar

d

(All arithmetic 
modulo 212)

Receiver’s view of the 
sequence number space:



• Receive frame (seq. # SN) from new sender:
– Set WinEnd ß SN

• Receive frame WinEnd < SN ≤ WinStart + 211:
– Shift scoreboard to accommodate SN
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Scoreboard Dynamics

102

Receiver
Sequence number space

1
10

2

104 105103

1
10

5

1 1
10

3Scoreboard

WinS
tar

t

(All arithmetic 
modulo 212)



• Receive frame, WinStart < SN ≤ WinEnd: Set SN’s bit

• Receive BAR (seq. # SN): Shift scoreboard right (WinStart ßSN)

• Receive frame, WinStart + 211 < SN < WinStart: no-op
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Scoreboard Dynamics

100

Receiver
Sequence number space

1 1
10

5

1 1
10

3
10

0

BAR: SN=100

BA
1 1

10
5

1 1
10

3
10

0

WinS
tar

t

(All arithmetic 
modulo 212)



• Hard to understate the influence of ALOHAnet, Ethernet, 
MACA, and MACAW on Wi-Fi

– CS, deference, RTS/CTS, BEB...

• Wi-Fi’s scoreboarding & selective retransmission serve 
as an example of the corollary to the E2E Principle

– Implement just enough of a function at the lower layer to 
get a performance advantage
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Wi-Fi Above the PHY:
Concluding Thoughts



Thursday Topic:
Bit Rate Adaptation

Mesh Networks: Roofnet

Friday Precept:
Introduction to Lab 2:

HackRF MAC Protocols
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