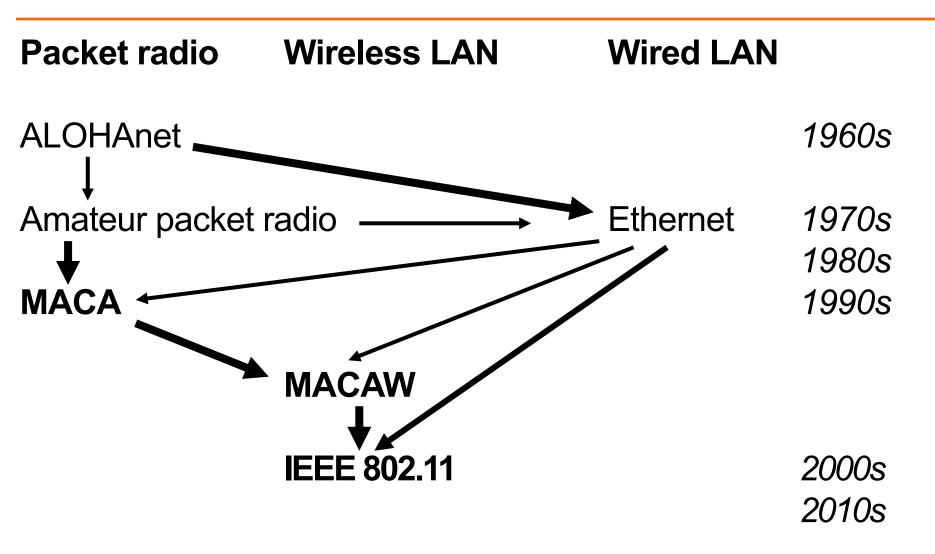

Link Layer II: MACA and MACAW


COS 463: Wireless Networks Lecture 5

Kyle Jamieson

Medium access: Timeline

Medium access: Timeline

Today: Wi-Fi Above the PHY

1. MACA

- Carrier sense in the wireless medium
- Hidden and exposed terminal problems

2. MACAW

3. 802.11 MAC layer

Fundamentals: Spectrum and Capacity

- A particular radio transmits over some range of frequencies; its bandwidth, in the physical sense
- When we've many senders near one another, how do we allocate spectrum among senders? Goals:
 - Support for arbitrary communication patterns
 - Simplicity of hardware
 - Robustness to interference
- Shannon's Theorem: there's a fundamental limit to channel capacity over a given spectrum range

Multi-channel

- Suppose we have 100 MHz of spectrum to use for a wireless LAN
- Strawman: Subdivide into 50 channels of 2 MHz each: FDMA, narrow-band transmission
 - Radio hardware simple, channels don't mutually interfere, but
 - Multi-path fading (mutual cancellation of out-of-phase reflections)
 - Base station can allocate channels to users. How do you support arbitrary communication patterns?

Idea: Use a single, shared channel

- Spread transmission across whole 100 MHz of spectrum
 - Remove constraints assoc. w/one channel per user
 - Robust to multi-path fading
 - Some frequencies likely to arrive intact
 - Supports peer-to-peer communication

- Collisions: Receiver must hear ≤1 strong transmission at a time
- So adopt carrier sense and deference from Ethernet
 - Listen before sending, defer to ongoing

Assumptions and goals

- Assumptions
 - Uniform, circular radio propagation
 - Fixed transmit power, all same ranges
 - Equal interference and transmit ranges

Radios modeled as "conditionally connected" wires based on circular radio ranges

- Goals
 - Fairness in sharing of medium
 - Efficiency (total bandwidth achieved)
 - Reliability of data transfer at MAC layer

Concurrency versus Taking Turns

Far-apart links should send concurrently:

Nearby links should take turns:

When Does CS Work Well?

- Two transmission pairs are far away from each other
 - Neither sender carrier-senses the other

B transmits to A, while D transmits to C.

When Does CS Work Well?

- Both transmitters can carrier sense each other
 - Carrier sense uses thresholded correlation value to determine if medium occupied

But what about cases in between these extremes?

B transmits to A, D transmits to C, taking turns.

Hidden Terminal Problem

- C can't hear A, so will transmit while A transmits
 - Result: Collision at B
- Carrier Sense insufficient to detect all transmissions on wireless networks!
- Key insight: Collisions are spatially located at the receiver

Exposed Terminal Problem

- If C transmits, does it cause a collision at A?
 - Yet C cannot transmit while B transmits to A!
- Same insight: Collisions spatially located at receiver
- One possibility: directional antennas rather than omnidirectional. Why does this help? Why is it hard?

MACA: Multiple Access with Collision Avoidance

Carrier sense became adopted in packet radio

• But distances (cell size) remained large

Hidden and Exposed terminals abounded

 Simple solution: use receiver's medium state to determine transmitter behavior

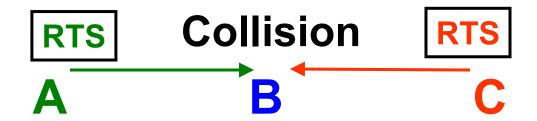
RTS/CTS

- Exchange of two short messages: Request to Send (RTS) and Clear to Send (CTS)
- Algorithm
 - A sends an RTS (tells B to prepare)
 - 2. B replies an CTS (echoes message length)
 - 3. A sends its Data

Deference to CTS

- Hear CTS

 Defer for length of expected data transmission time
 - Solves hidden terminal problem


Deference to RTS

- Hear RTS → Defer one CTS-time (why?)
- MACA: No carrier sense before sending!
 - Karn concluded useless because of hidden terminals
- So exposed terminals can transmit concurrently:

Collision!

- A's RTS collides with C's RTS, both are lost at B
 - B will not reply with a CTS

- Might collisions involving data packets occur?
 - Not according to our (unrealistic) assumptions
 - But Karn acknowledges interference range > communication range

BEB in MACA

- When collisions arise, MACA senders randomly backoff like Ethernet senders then retry the RTS
- How long do collisions take to detect in the Experimental Ethernet?
- What size should we make MACA backoff slots?

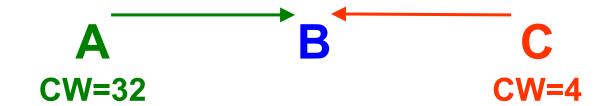
BEB in MACA

- Current backoff constant: CW
- MACA sender:
 - $-CW_0 = 2$ and $CW_M = 64$
 - Upon successful RTS/CTS, CW ← CW_0
 - Upon failed RTS/CTS, CW ← min[2CW, CW_M]
- Before retransmission, wait a uniform random number of RTS lengths (30 bytes) in [0, CW]
 - $-30 \text{ bytes} = 240 \mu \text{s}$

Today: Wi-Fi Above the PHY

1. MACA

2. MACAW


3. 802.11 MAC layer

MACAW: Context

- Published in SIGCOMM 1994, work '93/'94
- Wi-Fi standards proceeded in parallel (IEEE standard '97)
 - 802.11 draws on MACAW, which draws on MACA
- Assumptions and goals: Same as MACA
- Setting: Wireless LAN
 - Packet radio cell size: circa 100 mi. (528 μs)
 - Wireless LAN cell size: circa 100 ft. (100 ns)

Fairness in BEB/MACA

- MACA's BEB can lead to unfairness: backed-off sender has decreasing chance to acquire medium ("the poor get poorer")
- Simple example: A, C each sending at a rate that can alone saturate the network

- C more likely to win the backoff and set minimum CW=2
- A more likely to defer (maintain CW)

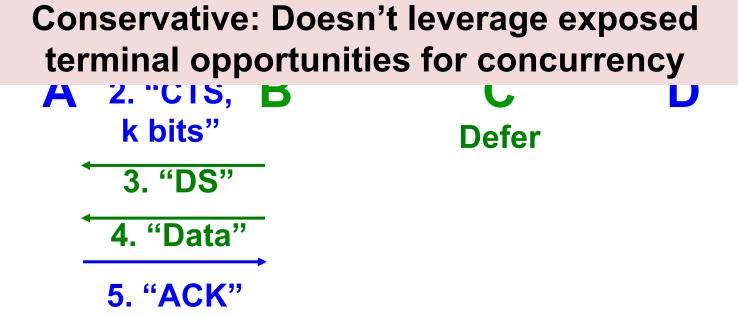
BEB in MACAW: Copy

- MACAW proposal: senders write their CW into packets
 - Upon hearing a packet, copy and adopt its CW
- Result: Dissemination of congestion level of "winning" transmitter to its competitors
- Is this a good idea?
- RTS failure rate at one node propagates far and wide
 - Ambient noise? Regions with different loads?

BEB in MACAW

- Integrates with MACAW's ACK mechanism
- Multiplicative increase, linear decrease (MILD)
- MACAW sender:
 - $-CW_0 = 2$ and $CW_M = 64$
 - Upon failed RTS/CTS
 - $CW \leftarrow \min[1.5CW, CW_M]$
 - Upon successful RTS/CTS but failed ACK, no change
 - Upon successful RTS/CTS/DATA/ACK
 - CW ← CW-1

Reliability: ACK


- MACAW introduces an ACK after DATA packets; not in MACA
- Sender resends if RTS/CTS succeeds but no ACK returns
- Sender resends RTS. Two cases:
- 1. DATA was lost
 - Receiver sends CTS, sender DATA
- 2. Receiver already has the DATA (reverse-link **ACK loss**)
 - Receiver sends ACK

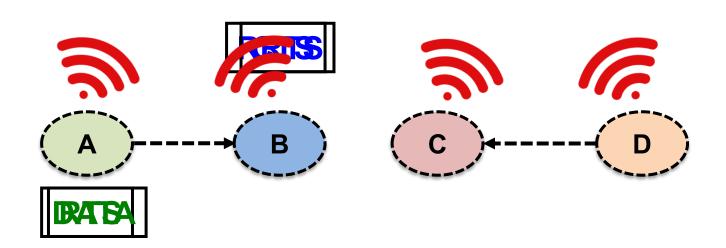
ACK: Considerations

- Avoid TCP window reductions when interference
- Useful when there's ambient noise (microwave ovens...)
- Why are sequence numbers in DATA packets now important (not mentioned directly in paper!)
- Are ACKs useful for multicast packets? Consequences for, e.g., ARP?

MACAW and **Exposed Terminals**

- C can proceed only if it can hear a CTS from D
 - But B's DATA will likely clobber
- So B sends a Data Sending (DS) packet after CTS
 - So C knows that B received a CTS
 - C defers until after ACK

Need for Synchronization


- Suppose D has a smaller CW, ongoing transmission
- B can not reply to A's RTS
- A doesn't know when the contention periods are
 - So, A's backoff will increase: unfair

MACAW's approach: let B contend "on behalf of" A

MACAW: RRTS

- But B knows when the gaps for contention are
- B sends a Request for RTS (RRTS) packet to A when DATA completes (hears an ACK from C)
- C defers transmissions for two slot periods (why?)
- A sends a RTS immediately without backoff

A Problem not Solved by RRTS

- What happens in this scenario?
 - Assume C is successful, ongoing transmission
 - When A sends RTS to B, B just can't hear it
 - So this problem is not solved by RRTS

Today: Wi-Fi Above the PHY

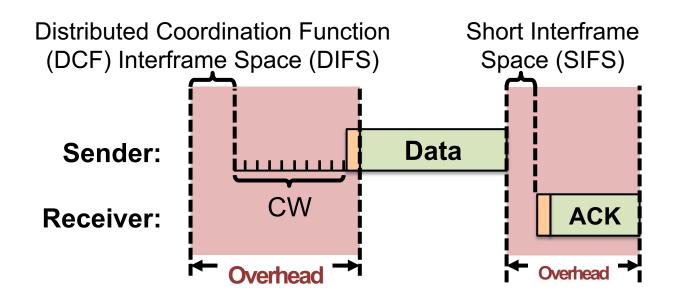
1. MACA

2. MACAW

3. 802.11 MAC layer

- Contention and backoff
- Frame aggregation
- Selective retransmission and Acknowledgement

802.11's MAC


- Adopts MACAW's MAC from a high level:
 - Same RTS/CTS/DATA/ACK
 - RTS/CTS optional
 - Different contention window control

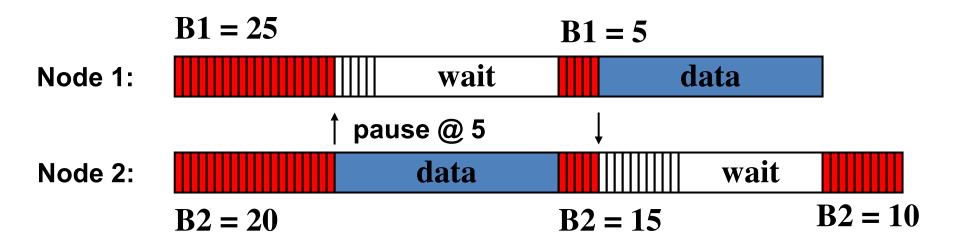
- Adopts CS and Deference from Ethernet:
 - But not collision detection
 - Transmit signal power >> receive signal power

Adds design elements for high data rates, TCP above

Deference times for Prioritization

Fixed-time deference + CS = prioritization (DIFS > SIFS)

- So, overhead of fixed time duration per Wi-Fi Frame:
 - RTS/CTS (if present), DIFS, CW, preamble, SIFS, ACK


802.11 ac: SIFS = 16 μ s, DIFS = 34 μ s

Backoff: Pausing and Resuming

 802.11 backoff slot time = Physical CS time + propagation time + time to switch radio from receive to transmit

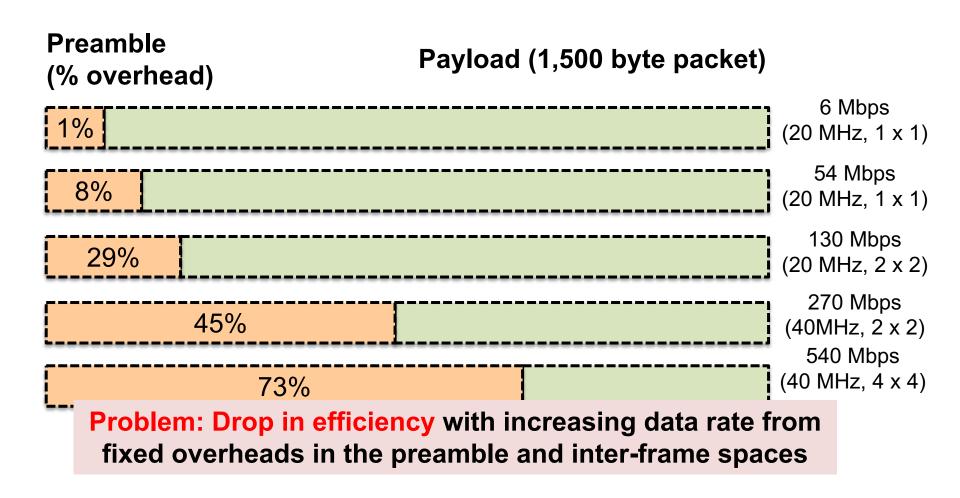
802.11 ac: slot time = 9 μs

No MACAW: No "copy," no MILD, no DS, no RRTS

802.11's Pause

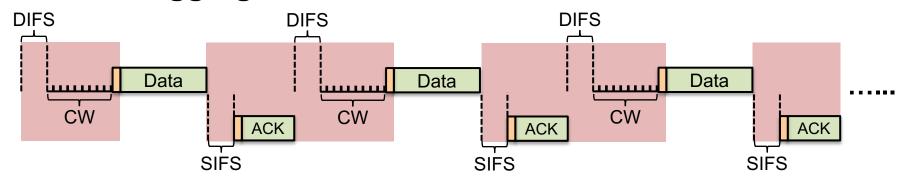
- Adaptively sets CW with BEB
 - Start with CW = 31, double if no CTS or ACK received
 - Reset to 31 on successful transmission
- Not fair in the short term
 - Under contention, losers will use larger CW than winners (winners reset)
 - Winners may be able to transmit several packets while unlucky nodes are still counting down
- Could adopt MACAW's copy & MILD, but has drawbacks

Today: Wi-Fi Above the PHY

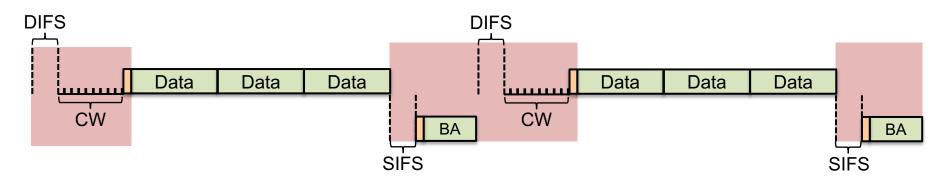

1. MACA

2. MACAW

3. 802.11 MAC layer

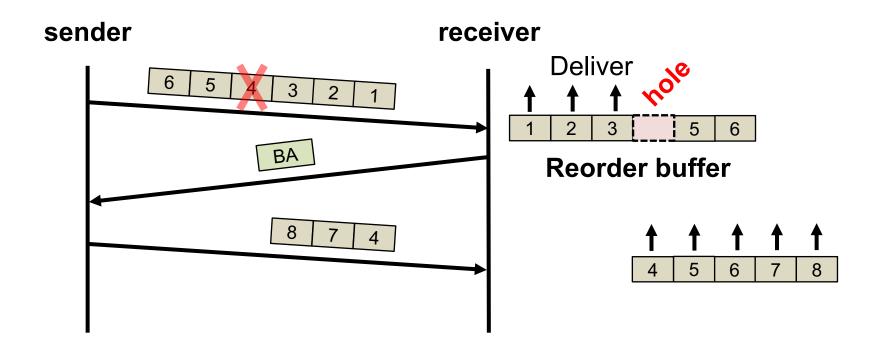

- Contention and backoff
- Frame aggregation
- Selective retransmission and Acknowledgement

Motivation: MAC Scaling Incommensurate with PHY Bitrate

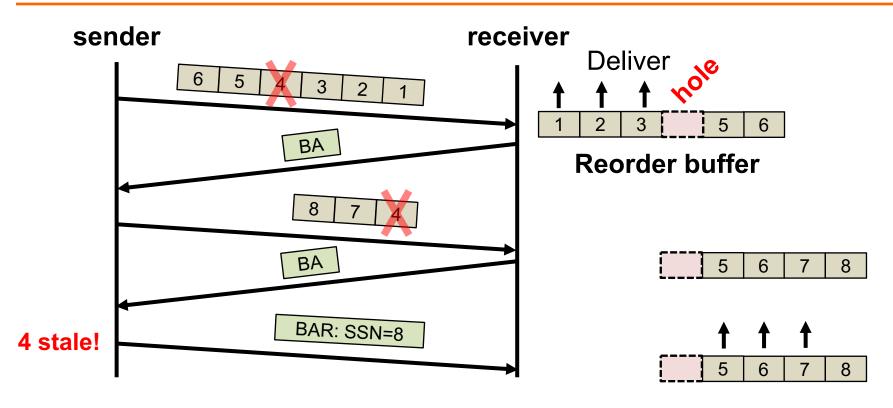


Aggregation Amortizes Fixed Overheads

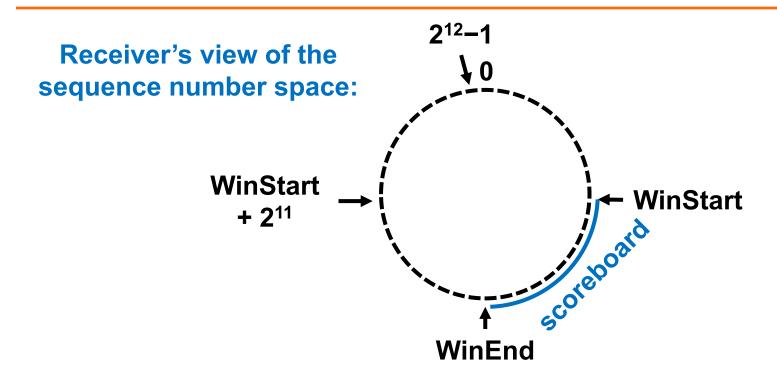
Without aggregation:


- With aggregation: Multiple frames/channel acquisition
 - Block ack (BA) tells sender which arrived

802.11: Selective Retransmission

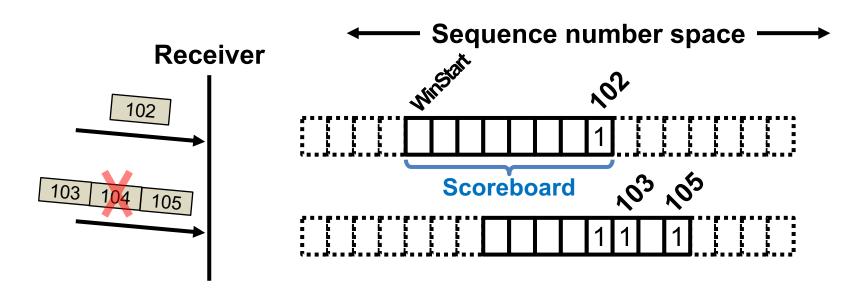

- 802.11 adopts TCP's selective retransmission, but:
 - Primary consideration is performance at the link layer
 - Protocol is only semi-reliable: may drop packets
- Receiver-side reorder buffer for in-order delivery
- Receiver-side scoreboard for feedback to sender
- Sender transmits Block ACK request (BAR) frames:
 - If needed, sender can solicit a Block ACK response (BA response) from receiver
 - 2. Sender may direct receiver to drop (i.e., fail to deliver to the network layer) frames it deems old

Reorder Buffer Operation


- Like TCP, 802.11's reorder buffer guarantees in-order delivery to the layer above
- But at most once instead of exactly-once semantics

Flushing the Reorder Buffer

- On receiving a BAR containing starting sequence number SSN:
 - Deliver all frames with sequence number < SSN


(All arithmetic modulo 2¹²)

- Each bit in BA frame scoreboard bitmap corresponds to receipt of frames in [WinStart, WinEnd) interval
- Data and BAR frames move the scoreboard

(All arithmetic modulo 2¹²)

Scoreboard Dynamics

- Receive frame (seq. # SN) from new sender:
 - Set WinEnd ← SN
- Receive frame WinEnd < SN ≤ WinStart + 2¹¹:
 - Shift scoreboard to accommodate SN

(All arithmetic modulo 2¹²)

Scoreboard Dynamics

- Receive frame, WinStart < SN ≤ WinEnd: Set SN's bit
- Receive BAR (seq. # SN): Shift scoreboard right (WinStart ← SN)
- Receive frame, WinStart + 2¹¹ < SN < WinStart: no-op

Wi-Fi Above the PHY: Concluding Thoughts

- Hard to understate the influence of ALOHAnet, Ethernet, MACA, and MACAW on Wi-Fi
 - CS, deference, RTS/CTS, BEB...

- Wi-Fi's scoreboarding & selective retransmission serve as an example of the corollary to the E2E Principle
 - Implement just enough of a function at the lower layer to get a performance advantage

Thursday Topic: Bit Rate Adaptation Mesh Networks: Roofnet

Friday Precept:
Introduction to Lab 2:
HackRF MAC Protocols