
End-to-End Transport Over Wireless II:
Snoop and Explicit Loss Notification

COS 463: Wireless Networks
Lecture 3

Kyle Jamieson

[Various parts adapted from S. Das, B. Karp, N. Vaidya]

1. Transmission Control Protocol (TCP)
– Window-based flow control
– Retransmissions and congestion control

2. TCP over Wireless
– TCP Snoop
– Explicit Loss Notification

Today

2

Window-Based Flow Control: Motivation

• Suppose sender sends one packet, awaits ACK, repeats…
• Result: At most one packet sent, per RTT
• e.g., 70 ms RTT, 1500-byte packets àMax t’put: 171 Kbps

3

• Dispatch window of segments sequentially, w/o awaiting ACKs
– Retain packets until ACKed, track which are ACKed
– Set retransmit timer for each window

• When expires, resend unACKed segments in window

Idea: Pipeline Transmissions
(Fixed Window-Based Flow Control)

But: RTT idle time from grant of new
window to data arrival at receiver

Even better approach, used by TCP: sliding window,
extends as each ACK returns, so no idle time!

4

• Network bottleneck: point of slowest rate along path
between sender and receiver

• What size sender window keeps the pipe full?

• Window too small: can’t fill pipe
• Window too large: unnecessary network load/queuing/loss

Choosing Window Size:
The Bandwidth-Delay Product

5

Increasing utilization with pipelining

First bit sent, t = 0
sender receiver

RTT

Last bit sent, t = L / R

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet,
send ACK

Data packet size L bits, bottleneck rate R bits/second

Usender =
N ⋅L / R

RTT+ L / R
=1

N −1()L = RTT ⋅R

Number of bits
“in flight”

Delay × Bandwidth
product

The bandwidth-delay product

sender receiver

RTT

Data packet size L bits, bottleneck rate R bits/second

Goal: window size = RTT × bottleneck rate
e.g., to achieve bottleneck rate of 1 Mbps, across a

70 ms RTT, need window size:
W = (106 bps × .07 s) = 70 Kbits = 8.75 Kbytes

• Keep sending for time RTT = (N-1)L / R

TCP Packet Header

• TCP header: 20 bytes long
• Checksum covers TCP packet + “pseudo header”

– IP header source and destination addresses, protocol
– Length of TCP segment (TCP header + data)

8

TCP Header Details
• Connections inherently bidirectional; all TCP

headers carry both data & ACK sequence numbers

• 32-bit sequence numbers are in units of bytes

• Source and destination port numbers
– Multiplexing of TCP by applications
– UNIX: local ports below 1024 reserved (only root may use)

• Window field: advertisement of number of bytes
advertiser willing to accept

9

TCP: Data Transmission
• Each byte numbered sequentially (modulo 232)

• Sender buffers data in case retransmission required
• Receiver buffers data for in-order reassembly

• Sequence number (seqno) field in TCP header
indicates first user payload byte in packet

10

• Receiver indicates offered window size W explicitly
to sender in window field in TCP header
– Corresponds to available buffer space at receiver

• Receiver sends cumulative ACKs:
– ACK number in TCP header names highest

contiguous byte number received thus far, +1
– one ACK per received packet, or:

• Delayed ACK: receiver batches ACKs, sends one for
every pair of data packets (200 ms max delay)

TCP: Receiver functionality

11

• Usable window at sender:
– Left edge advances as packets sent
– Right edge advances as receive window updates arrive

12

TCP: Sender’s Window

ptg999

702 TCP Data Flow and Window Management

TCP maintains its window structures in terms of bytes (not packets). In Fig-
ure 15-9 we have numbered the bytes 2 through 11. The window advertised by the
receiver is called the offered window and covers bytes 4 through 9, meaning that the
receiver has acknowledged all bytes up through and including number 3 and has
advertised a window size of 6. Recall from Chapter 12 that the Window Size field con-
tains a byte offset relative to the ACK number. The sender computes its usable window,
which is how much data it can send immediately. The usable window is the offered
window minus the amount of data already sent but not yet acknowledged. The vari-
ables SND.UNA and SND.WND are used to hold the values of the left window edge
and offered window. The variable SND.NXT holds the next sequence number to be
sent, so the usable window is equal to (SND.UNA + SND.WND – SND.NXT).

Over time this sliding window moves to the right, as the receiver acknowl-
edges data. The relative motion of the two ends of the window increases or
decreases the size of the window. Three terms are used to describe the movement
of the right and left edges of the window:

 1. The window closes as the left edge advances to the right. This happens when
data that has been sent is acknowledged and the window size gets smaller.

 2. The window opens when the right edge moves to the right, allowing more
data to be sent. This happens when the receiving process on the other end
reads acknowledged data, freeing up space in its TCP receive buffer.

 3. The window shrinks when the right edge moves to the left. The Host
Requirements RFC [RFC1122] strongly discourages this, but TCP must be
able to cope with it. Section 15.5.3 on silly window syndrome shows an
example where one side would like to shrink the window by moving the
right edge to the left but cannot.

� � � ��� �

2IIHUHG�:LQGRZ
(SND.WND)

6HQW�DQG�
$FNQRZOHGJHG

� � � �� �����

6HQW�DQG�1RW�
$FNQRZOHGJHG

%HLQJ�6HQW
�8VDEOH�:LQGRZ�

&DQQRW�6HQG�8QWLO
:LQGRZ�0RYHV

/HIW�(GJH
(SND.UNA)

5LJKW�(GJH
(SND.UNA + SND.WND)

&ORVHV 2SHQV6KULQNV

SND.NXT

Figure 15-9 The TCP sender-side sliding window structure keeps track of which sequence numbers
have already been acknowledged, which are in flight, and which are yet to be sent. The
size of the offered window is controlled by the Window Size field sent by the receiver
in each ACK.

Offered window (advertised by receiver)

1. Transmission Control Protocol (TCP)
– Window-based flow control
– Retransmissions and congestion control

2. TCP over Wireless
– TCP Snoop
– Explicit Loss Notification

Today

13

• Recall: Sender sets timer for each sent packet
– Expected time for ACK to return: RTT
– when ACK returns, timer canceled
– if timer expires before ACK returns, packet resent

• TCP estimates RTT using measurements mi from timed
packet/ACK pairs
– RTTi = ((1 − α) x RTTi − 1 + α x mi)

• Original TCP retransmit timeout: RTOi = β� RTTi
– original TCP: β = 2

TCP: Retransmit Timeouts

14

Mean and Variance:
Jacobson’s RTT Estimator
• Above link load of 30% at router, β� RTTi will retransmit

too early!
– Response to increasing load: waste bandwidth on

duplicate packets; result: congestion collapse!

• Idea [Jacobson 88]: Estimate mean deviation vi, (EWMA
of |mi – RTTi|), a stand-in for variance:

vi = vi-1�(1-γ) + γ�|mi − RTTi|
– Then use retransmission timeout RTOi = RTTi + 4vi

Mean and Variance RTT estimator used by all modern TCPs

15

Self-Clocking Transmission

• Self-clocking transmission: Conservation of Packets
– each ACK returns, one data packet sent
– spacing of returning ACKs: matches spacing of packets in

time at slowest link on path
16

Goals in Congestion Control
1. Achieve high utilization on links; don’t waste

capacity!

2. Divide bottleneck link capacity fairly among users

3. Be stable: converge to steady allocation among
users

4. Avoid congestion collapse

17

Congestion Collapse

• Cliff behavior observed in [Jacobson 88]

Offered load (bps)

Th
ro

ug
hp

ut
 (

bp
s)

Congestion
collapse!

Knee

18

Congestion Requires Slowing Senders
• Bigger buffers cannot prevent congestion: senders

must slow down
• Absence of ACKs implicitly indicates congestion
• TCP sender’s window size determines sending rate

• Recall: Correct window size is bottleneck link
bandwidth-delay product

• How can the sender learn this value?
– Search for it, by adapting window size
– Feedback from network: ACKs return (window OK)

or do not return (window too big)
19

20

Reaching Equilibrium: Slow Start
• At connection start, sender sets congestion window

size, cwnd, to pktSize (one packet’s worth of bytes),
not whole window

• Sender sends up to min(cwnd, W)
– Upon return of each ACK, increase cwnd by
pktSize bytes until W reached

– “Slow” means exponential window increase!

• Takes log2(W / pktSize) RTTs to reach receiver’s
advertised window size W

Avoiding Congestion:
Multiplicative Decrease
• Recall sender uses window of size min(cwnd, W),

where W is receiver’s advertised window

• Upon timeout for sent packet, sender presumes
packet lost to congestion, and:
1. sets ssthresh = cwnd / 2
2. sets cwnd = pktSize
3. uses slow start to grow cwnd up to ssthresh

• End result: cwnd = cwnd / 2, via slow start

21

Taking Your Fair Share:
Additive Increase
• Drops indicate sending more than fair share of bottleneck
• No feedback to indicate using less than fair share

• Solution: Speculatively increase window size as ACKs return
– Additive increase: For each returning ACK,

cwnd = cwnd + (pktSize × pktSize) / cwnd
– Increases cwnd by ≈ pktSize bytes per RTT

Combined algorithm: Additive Increase,
Multiplicative Decrease (AIMD)

22

Refinement: Fast Retransmit (I)
• Sender must wait well over RTT for timer to expire

before loss detected

• TCP’s minimum retransmit timeout: 1 second

• Another indicator of loss:
– Suppose sender sends: 1, 2, 3, 4, 5 (...but 2 is lost)

– Receiver receives: 1, 3, 4, 5

– Receiver sends cumulative ACKs: 2, 2, 2, 2
• Loss causes duplicate ACKs

23

Fast Retransmit (II)
• Upon arrival of three duplicate

ACKs, sender:

1. sets cwnd = cwnd / 2
2. retransmits “missing” packet
3. no slow start

• Not only loss causes dup ACKs
– Packet reordering, too

data, seqno = 1

ACK = 513

data, seqno = 513

time

A B

data, seqno = 513
data, seqno = 1025
data, seqno = 1537

ACK = 513

ACK = 513

data, seqno = 2049

ACK = 513

24

25

AIMD in Action

Modeling Throughput, Loss, and RTT
• How do packet loss rate and RTT affect throughput

TCP achieves?

• Assume:
1. Only fast retransmits
2. No timeouts (so no slow starts in steady-state)

26

Evolution of Window Over Time

• Average window size: ¾W
• One window of packets is sent per RTT
• Bandwidth:

– ¾W packets per RTT
– (¾W x packet size) / RTT bytes per second
– W depends on loss rate…

time

W

W/2

27

• Assume no delayed ACKs, fixed RTT

• cwnd grows by one packet per RTT
– So it takes W/2 RTTs to go from window size W/2 to

window size W; this period is one cycle

• How many packets sent in total, in a cycle?
– (¾W / RTT) x (W/2 x RTT) = 3W2/8

• One loss per cycle (as window reaches W)
– So, the packet loss rate p = 8/3W2

– W = √(8/3p)

28

Window Size Versus Loss

• W = √(8/3p) = (4/3) x √(3/2p)

• Recall, bandwidth B = (3W/4 x packet size) / RTT

• Consequences:
1. Increased loss quickly reduces throughput

2. At same bottleneck, flow with longer RTT achieves
less throughput than flow with shorter RTT!

29

Throughput, Loss, and RTT Model

B = packet size / (RTT x √(2p/3))

1. Transmission Control Protocol (TCP) primer, cont’d

2. TCP over Wireless
– TCP Snoop
– Explicit Loss Notification

Today

30

• TCP interprets any packet loss as a sign of congestion
– TCP sender reduces congestion window

• On wireless links, packet loss can also occur due to
random channel errors, or interference
– Temporary loss not due to congestion
– Reducing window may be too conservative
– Leads to poor throughput

Review: TCP on Wireless Links

31

1. Mask wireless losses from TCP sender
– Then TCP sender will not reduce congestion window

– Split Connection Approach
– TCP Snoop

2. Explicitly notify TCP sender about cause of packet loss

Review: Two Broad Approaches

32

• Removes most significant problem of split connection:
breaking end-to-end semantics
– No more split connection
– Single end-to-end connection like regular TCP

• TCP Snoop only modifies the AP

• Basic Idea (Downlink traffic):
– AP “snoops” on TCP traffic to and from the mobile

• Quickly retransmits packets it thinks may be lost
over the wireless link

TCP Snoop: Introduction

33

Snoop Protocol: High-level View

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application

Per TCP-connection state

TCP connection
Re

tra
ns

m
it

34

• AP buffers downlink TCP segments
– Until it receives corresponding ACK from mobile

• AP snoops on uplink TCP acknowledgements
– Detects downlink wireless TCP segment loss via

duplicate ACKs or time-out

TCP Snoop: Downlink traffic case

40 39 3738

3634Wired Internet Wireless Link

TCP Segments

TCP ACKs

Content
Server

MobileAP

35

• When AP detects a lost TCP segment:
– Locally, quickly retransmit that segment over the

wireless link
– Minimize duplicate ACKs flowing back to server

• Goal: Content server unaware of wireless loss and
retransmission
– No reduction in cwnd

TCP Snoop Goal:
Recover wireless downlink loss

36

TCP Snoop: Downlink Example

40 39 3738

3634

36

37

38

35
Snoop Cache (at AP):
TCP segments seen
(whose ACKs have
not yet been seen)

Wired Internet Wireless Link

TCP Segments

TCP ACKs

37

5

1. A new packet in the normal TCP sequence: This is the common case, when a new packet in the normal
increasing sequence arrives at the BS. In this case the packet is added to the snoop cache and forwarded on to
the MH. We do not perform any extra copying of data while doing this. We also place a timestamp on one
packet per transmitted window in order to estimate the round-trip time of the wireless link. The details of these
steps are described in Section 6.

2. An out-of-sequence packet that has been cached earlier: This is a less common case, but it happens when
dropped packets cause timeouts at the sender. It could also happen when a stream of data following a TCP
sender fast retransmission arrives at the base station. Different actions are taken depending on whether this
packet is greater or less than the last acknowledged packet seen so far. If the sequence number is greater than
the last acknowledgment seen, it is very likely that this packet didn’t reach the MH earlier, and so it is for-
warded on. If, on the other hand, the sequence number is less than the last acknowledgment, this packet has
already been received by the MH. At this point, one possibility would be to discard this packet and continue,
but this is not always the best thing to do. The reason for this is that the original ACK with the same sequence
number could have been lost due to congestion while going back to the FH. In order to facilitate the sender
getting to the current state of the connection as fast as possible, a TCP acknowledgment corresponding to the
last ACK seen at the BS is generated by the snoop module (with the source address and port corresponding to
the MH) and sent to the FH.

3. An out-of-sequence packet that has not been cached earlier: In this case the packet was either lost earlier due
to congestion on the wired network or has been delivered out of order by the network. The former is more
likely, especially if the sequence number of the packet (i.e, the sequence number of its first data byte) is more
than one or two packets away from the last one seen so far by the snoop module. This packet is forwarded to
the MH, and also marked as having been retransmitted by the sender. Snoop_ack() uses this information to
process duplicate acknowledgments that arrive for this packet from the MH.

3.1.2 Snoop_ack()

Snoop_ack() monitors and processes the acknowledgments (ACKs) sent back by the MH and performs various
operations depending on the type and number of acknowledgments it receives. These ACKs fall into one of three
categories:

Yes

Packet arrives

New pkt? No
1. Forward packet
2. Reset local rexmit
 counter

In-sequence?

Yes

1. Cache packet
2. Forward to
 mobile

1. Mark as cong. loss
2. Forward pkt

Congestion loss

Common case

Sender rexmission

No

Figure 1. Flowchart for snoop_data().

Downlink traffic operation, at Snoop AP

Downlink TCP segments:

38

TCP Snoop: Downlink example

41 40 3839

3634

36

37

38

35 39

39

6

1. A new ACK: This is the common case (when the connection is fairly error-free and there is little user move-
ment), and signifies an increase in the packet sequence received at the MH. This ACK initiates the cleaning of
the snoop cache and all acknowledged packets are freed. The round-trip time estimate for the wireless link is
also updated at this time. This estimate is not done for every packet, but only for one packet in each window of
transmission, and only if no retransmissions happened in that window. The last condition is needed because it
is impossible in general to determine if the arrival of an acknowledgment for a retransmitted packet was for
the original packet or for the retransmission [14]. Finally, the acknowledgment is forwarded to the FH.

2. A spurious ACK: This is an acknowledgment less than the last acknowledgment seen by the snoop module
and is a situation that rarely happens. It is discarded and the packet processing continues.

3. A duplicate ACK (DUPACK): This is an ACK that is identical to a previously received one. In particular, it is
the same as the highest cumulative ACK seen so far. In this case the next packet in sequence from the
DUPACK has not been received by the MH. However, some subsequent packets in the sequence have been
received, since the MH generates a DUPACK for each TCP segment received out of sequence. One of several
actions is taken depending on the type of duplicate acknowledgment and the current state of snoop:

• The first case occurs when the DUPACK is for a packet that is either not in the snoop cache or has been
marked as having been retransmitted by the sender. If the packet is not in the cache, it needs to be resent
from the FH, perhaps after invoking the necessary congestion control mechanisms at the sender. If the
packet was marked as a sender-retransmitted packet, the DUPACK needs to be routed to the FH because
the TCP stack there maintains state based on the number of duplicate acknowledgments it receives when it
retransmits a packet. Therefore, both these situations require the DUPACK to be routed to the FH.

• The second case occurs when the snoop module gets a DUPACK that it doesn’t expect to receive for the
packet. This typically happens when the first DUPACK arrives for the packet, after a subsequent packet in
the stream reaches the MH, following a packet loss. The arrival of each successive packet in the window
causes a DUPACK to be generated for the lost packet. In order to make the number of such DUPACKs as
small as possible, the lost packet is retransmitted as soon as the loss is detected, and at a higher priority
than normal packets. This is done by maintaining two queues at the link layer for high and normal priority
packets. In addition, snoop also estimates the maximum number of duplicate acknowledgments that can
arrive for this packet. This is done by counting the number of packets that were transmitted after the lost
packet prior to its retransmission.

Figure 2. Flowchart for snoop_ack().

Ack arrives

No

Dup ack?No

New ack? Yes

Yes

Discard

First one?NoDiscard Yes

Common case

Spurious ack

Next pkt lost
Later dup acks

 for lost packet

Retransmit lost
packet with high
priority

1. Free buffers
2. Update RTT

estimate
3. Propagate ack

to sender

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

40

TCP Snoop: Downlink example

41 40 3839

34

37

38

39

36

36

35

41

TCP Snoop: Downlink example

42 41 3940

36

• TCP receiver does not delay duplicate ACKs (dupacks)

36

First
dupack

37

38

39

40

42

TCP Snoop: Downlink example

40

363636

4143 42

37

38

39

40

41

Second
dupack

First
dupack

43

6

1. A new ACK: This is the common case (when the connection is fairly error-free and there is little user move-
ment), and signifies an increase in the packet sequence received at the MH. This ACK initiates the cleaning of
the snoop cache and all acknowledged packets are freed. The round-trip time estimate for the wireless link is
also updated at this time. This estimate is not done for every packet, but only for one packet in each window of
transmission, and only if no retransmissions happened in that window. The last condition is needed because it
is impossible in general to determine if the arrival of an acknowledgment for a retransmitted packet was for
the original packet or for the retransmission [14]. Finally, the acknowledgment is forwarded to the FH.

2. A spurious ACK: This is an acknowledgment less than the last acknowledgment seen by the snoop module
and is a situation that rarely happens. It is discarded and the packet processing continues.

3. A duplicate ACK (DUPACK): This is an ACK that is identical to a previously received one. In particular, it is
the same as the highest cumulative ACK seen so far. In this case the next packet in sequence from the
DUPACK has not been received by the MH. However, some subsequent packets in the sequence have been
received, since the MH generates a DUPACK for each TCP segment received out of sequence. One of several
actions is taken depending on the type of duplicate acknowledgment and the current state of snoop:

• The first case occurs when the DUPACK is for a packet that is either not in the snoop cache or has been
marked as having been retransmitted by the sender. If the packet is not in the cache, it needs to be resent
from the FH, perhaps after invoking the necessary congestion control mechanisms at the sender. If the
packet was marked as a sender-retransmitted packet, the DUPACK needs to be routed to the FH because
the TCP stack there maintains state based on the number of duplicate acknowledgments it receives when it
retransmits a packet. Therefore, both these situations require the DUPACK to be routed to the FH.

• The second case occurs when the snoop module gets a DUPACK that it doesn’t expect to receive for the
packet. This typically happens when the first DUPACK arrives for the packet, after a subsequent packet in
the stream reaches the MH, following a packet loss. The arrival of each successive packet in the window
causes a DUPACK to be generated for the lost packet. In order to make the number of such DUPACKs as
small as possible, the lost packet is retransmitted as soon as the loss is detected, and at a higher priority
than normal packets. This is done by maintaining two queues at the link layer for high and normal priority
packets. In addition, snoop also estimates the maximum number of duplicate acknowledgments that can
arrive for this packet. This is done by counting the number of packets that were transmitted after the lost
packet prior to its retransmission.

Figure 2. Flowchart for snoop_ack().

Ack arrives

No

Dup ack?No

New ack? Yes

Yes

Discard

First one?NoDiscard Yes

Common case

Spurious ack

Next pkt lost
Later dup acks

 for lost packet

Retransmit lost
packet with high
priority

1. Free buffers
2. Update RTT

estimate
3. Propagate ack

to sender

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

44

TCP Snoop: Downlink example

41

3636

3744 43

36

37

38

39

40

41

42

• Dupack triggers retransmission of packet 37 from AP

Second
dupack

First
dupack

Third
dupack

45

6

1. A new ACK: This is the common case (when the connection is fairly error-free and there is little user move-
ment), and signifies an increase in the packet sequence received at the MH. This ACK initiates the cleaning of
the snoop cache and all acknowledged packets are freed. The round-trip time estimate for the wireless link is
also updated at this time. This estimate is not done for every packet, but only for one packet in each window of
transmission, and only if no retransmissions happened in that window. The last condition is needed because it
is impossible in general to determine if the arrival of an acknowledgment for a retransmitted packet was for
the original packet or for the retransmission [14]. Finally, the acknowledgment is forwarded to the FH.

2. A spurious ACK: This is an acknowledgment less than the last acknowledgment seen by the snoop module
and is a situation that rarely happens. It is discarded and the packet processing continues.

3. A duplicate ACK (DUPACK): This is an ACK that is identical to a previously received one. In particular, it is
the same as the highest cumulative ACK seen so far. In this case the next packet in sequence from the
DUPACK has not been received by the MH. However, some subsequent packets in the sequence have been
received, since the MH generates a DUPACK for each TCP segment received out of sequence. One of several
actions is taken depending on the type of duplicate acknowledgment and the current state of snoop:

• The first case occurs when the DUPACK is for a packet that is either not in the snoop cache or has been
marked as having been retransmitted by the sender. If the packet is not in the cache, it needs to be resent
from the FH, perhaps after invoking the necessary congestion control mechanisms at the sender. If the
packet was marked as a sender-retransmitted packet, the DUPACK needs to be routed to the FH because
the TCP stack there maintains state based on the number of duplicate acknowledgments it receives when it
retransmits a packet. Therefore, both these situations require the DUPACK to be routed to the FH.

• The second case occurs when the snoop module gets a DUPACK that it doesn’t expect to receive for the
packet. This typically happens when the first DUPACK arrives for the packet, after a subsequent packet in
the stream reaches the MH, following a packet loss. The arrival of each successive packet in the window
causes a DUPACK to be generated for the lost packet. In order to make the number of such DUPACKs as
small as possible, the lost packet is retransmitted as soon as the loss is detected, and at a higher priority
than normal packets. This is done by maintaining two queues at the link layer for high and normal priority
packets. In addition, snoop also estimates the maximum number of duplicate acknowledgments that can
arrive for this packet. This is done by counting the number of packets that were transmitted after the lost
packet prior to its retransmission.

Figure 2. Flowchart for snoop_ack().

Ack arrives

No

Dup ack?No

New ack? Yes

Yes

Discard

First one?NoDiscard Yes

Common case

Spurious ack

Next pkt lost
Later dup acks

 for lost packet

Retransmit lost
packet with high
priority

1. Free buffers
2. Update RTT

estimate
3. Propagate ack

to sender

Downlink traffic operation, at Snoop AP

Downlink TCP segments: Uplink TCP ACKs:

46

TCP Snoop: Downlink example

37

36

4245 44

36

37

38

39

40

41

42

43

36Discard
2nd dupack

47

TCP Snoop: Downlink example

42

36

4346 45

36

37

38

39

40

41

42

43

41

36

44

Discard
3rd dupack

48

TCP Snoop: Downlink example

43

36

4447 46

36

37

38

39

40

41

42

43

41

36

44

• TCP sender does not fast retransmit

45

Discard
4th dupack

49

TCP Snoop: Downlink example

44

36

4548 47

36

42

43

41

36

44

45

43

46

50

• Less-common case but becoming more prevalent

• Buffer & retransmit TCP segments at AP? Not likely useful

• Run Snoop agent on the Mobile? Not likely useful

Uplink traffic case

40 39 3738

3634Wireless Link Wired Internet

TCP Segments

TCP ACKs

ServerMobile AP

51

• AP detects wireless uplink loss via missing sequence numbers

• AP immediately sends L2 negative ACK (NACK) to mobile
– Mobile quickly & selectively retransmits data

– Requires modification to AP and mobile’s link layer

Negative ACKs: Recovering uplink loss

40 39 3738

3634Wireless Link

TCP Segments

TCP ACKs

52

• Downlink works without modification to mobile or server

• Preserves end-to-end semantics. Crash does not affect
correctness, only performance.

• After an AP handoff: New AP needn’t Snoop TCP
– Can automatically fall back to regular TCP operation

– No state need be migrated (but if done, can improve
performance)

– Note such “state” is called soft state
• Good if available, but correct functionality otherwise

Snoop TCP: Advantages

53

• Mobile host still needs to be modified at L2 and L4
– This applies to NACK scheme for uplink traffic, not

Snoop for downlink traffic

• Violates the layering principle

• Almost violates the end-to-end principle

Negative ACKs: Critique

54

1. Mask wireless losses from TCP sender
– Then TCP sender will not reduce congestion window

– Split Connection Approach
– TCP Snoop

2. Explicitly notify TCP sender about cause of packet loss

Two Broad Approaches

55

• Notify the TCP sender that a wireless link (not congestion)
caused a certain packet loss

• Upon notification, TCP sender retransmits packet, but
doesn’t reduce congestion window

• Many design options:
– Who sends notification? How is notification sent? How

is notification interpreted at sender?
• We’ll discuss one example approach

Explicit Loss Notification (ELN)

56

• AP keeps track of gaps in the TCP packet sequence
received from the mobile sender

ELN for uplink TCP traffic

4 3 2 1 134

Wireless Link

TCP Segments

TCP ACKs

Gap, size 1
at seqno 2

ServerMobile

57

• When AP sees a dupack:
– AP compares dupack seqno with its recorded gaps

• If match: AP sets ELN bit in dupack and forwards it

• When mobile receives dupack with ELN bit set:
– Resends packet, but doesn’t reduce congestion window

ELN for uplink TCP traffic

4 3 2 1 134

111 1

Dupack with ELN set

TCP Segments
Gap, size 1
at seqno 2

ServerMobile

58

Thursday Topic:
Link Layer I: Time, Frequency,

and Code Division

Friday Precept
Introduction to Lab 1

59

