
End-to-End Transport Over Wireless I:
Preliminaries, Split Connection

COS 463: Wireless Networks
Lecture 2

Kyle Jamieson

[Various parts adapted from S. Das, B. Karp, N. Vaidya]



1. Layering and the End-to-End Argument

2. Transmission Control Protocol (TCP) primer

3. Split Connection TCP over wireless

Today

2



Layering: Motivation

• Re-implement every application for every new 
underlying transmission medium?

• Change every application on any change to an 
underlying transmission medium (and vice-versa)?

• No! But how does the Internet design avoid this?

Applications

Transmission 
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

3



Internet solution: Intermediate layers

• Intermediate layers provide a set of abstractions for 
applications and media

• New applications or media need only implement for 
intermediate layer’s interface

Applications

Transmission
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Intermediate layers

4



Properties of layers

• Service: What a layer does

• Service interface: How to 
access the service 
– Interface for the layer above

Application
Transport
Network

Link
Physical

• Protocol interface: How peers communicate to 
implement service
– Set of rules and formats that govern the communication 

between two Internet hosts

5



Physical layer (L1)
• Service: Move bits between two systems connected by a 

single physical link

• Interface: specifies how to send, receive bits
– e.g., require quantities and timing

• Protocols: coding scheme used to represent bits, voltage 
levels, duration of a bit

6



Data link layer (L2)
• Service: End hosts exchange atomic messages 

– Perhaps over multiple physical links
• But using same framing (headers/trailers)

– Arbitrates access to common physical media

– Implements reliable transmission, flow control

• Interface: send messages (frames) to other end hosts; 
receive messages addressed to end host

• Protocols: Addressing, routing, medium access control

7



Network layer (L3)
• Service: Deliver datagrams to other networks

– Cross-technology (e.g., Ethernet, 802.11, optical, …)
– Possibly includes packet scheduling/priority
– Possibly includes buffer management
– Best effort: may drop, delay, duplicate datagrams

• Interface: 
– Send packets to specified internetwork destination
– Receive packets destined for end host

• Protocols:
– Define inter-network addresses (globally unique)
– Construct routing tables and forward datagrams

8



Transport layer (L4)
• Service: Provide end-to-end communication between 

processes on different hosts
– Demultiplex communication between hosts
– Possibly reliability in the presence of errors
– Rate adaptation (flow control, congestion control)

• Interface: send message to specific process at given 
destination; local process receives messages sent to it

• Protocol: perhaps implement reliability, flow control, 
packetization of large messages, framing

9



Who does what?
• Five layers

– Lower three layers are implemented everywhere
– Top two layers are implemented only at end hosts

• Their protocols are end-to-end

Application
Transport
Network

Link
Physical

Network
Link

Physical

Host A Router

Application
Transport
Network

Link
Physical

Host B

10



Logical communication
• Each layer on a host interacts with its peer host’s 

corresponding layer via the protocol interface

Application
Transport
Network

Link
Physical

Network
Link

Physical

Host A Router

Application
Transport
Network

Link
Physical

Host B

11



Physical path across the Internet
• Communication goes down to physical network

• Then from network peer to peer

• Then up to the relevant layer

Application
Transport
Network

Link
Physical

Network
Link

Physical

Host A Router

Application
Transport
Network

Link
Physical

Host B

12



Protocol multiplexing
• Multiplexing: Multiple overlying protocols share use of a 

single underlying protocol

• Problem: How does the underlying protocol decide which 
overlying protocol messages go to?

Applications

Network

Host A

TCP UDP

Applications

Network

Host B

TCP UDP
???

13



Protocol headers
• Each layer attaches its own header (H) to facilitate 

communication between peer protocols

• On reception, layer inspects and removes its own header
– Higher layers don’t see lower layers’ headers

Application
Transport
Network

Link
Physical

Application
Transport
Network

Link
Physical

Host A Host B

data
dataH

H dataH
HH dataH
HHHH data HHHH data

HH dataH
H dataH

dataH
data

14



Host A

application

L3 Router

L2 Switch

Encapsulation in the Internet
message data

transport
network

link
physical

segment dataH
datagram H dataH

frame HH dataH
HHHH dataframe

link
physical

network
link

physical

HH dataH
HHHH data

HH dataH

H dataH
HH dataH

HHHH data

H dataH

Host B

applicationdata
transport
network

link

dataH
H dataH

HH dataH
HHHH data physical

15



Host A

application

• Lower-layer header contains 
demultiplexing information

• Network header contains Protocol
field specifying overlying protocol

Protocol demultiplexing
message data

transport
network

segment dataH
datagram H dataH

application
transport
network

dataH
H dataH Applications

Network

Host B

TCP UDP
???

Host B

16



Drawbacks of layering
• Layer nmay duplicate lower level functionality 

– e.g., error recovery to retransmit lost data

• Layers may need same information in headers
– e.g., timestamps, maximum transmission unit size

• Layering can hurt performance
– e.g., previous lecture

17



Layer violations
• Two types:

1. Overlying layer examines underlying layer’s state

– e.g., transport monitors wireless link-layer to see 
whether packet loss from congestion or corruption

2. Underlying layer inspecting overlying layer’s state

– e.g., firewalls, NATs (network address translators), 
“transparent proxies”

18



1. Layering and the End-to-End Argument

2. Transmission Control Protocol (TCP) primer

3. Split Connection TCP over wireless

Today

19



Motivation: End-to-End Argument
• Five layers in the Internet architecture model

• Five places to solve many of same problems:
– In-order delivery
– Duplicate-free delivery
– Reliable delivery after corruption, loss
– Encryption
– Authentication

• In which layer(s) should a particular function be 
implemented?

20



Example: Careful file transfer from A to B

• Goal: Accurately copy file on A’s disk to B’s disk

• Straw man design:
– Read file from A’s disk
– A sends stream of packets containing file data to B

• L2 retransmission of lost or corrupted packets at each hop
– B writes file data to disk

• Does this system meet the design goal?
– Bit errors on links not a problem

A R1 R2 R3 R4 B
data

LL ACKs

21



Where might errors happen?
• On A’s or B’s disk
• In A’s or B’s RAM or CPU
• In A’s or B’s software
• In the RAM, CPU, or software of any router that 

forwards packet

• Why might errors be likely?
– Drive for CPU speed and storage density: pushes 

hardware to EE limits, engineered to tight tolerances
• e.g., today’s disks return data that are the output of 

an maximum-likelihood estimation!
– Bugs abound!

22



Solution: End-to-End verification
1. A keeps a checksum with the on-disk data

– Why not compute checksum at start of transfer?
2. B computes checksum over received data, sends to A
3. A compares the two checksums and resends if not equal

• Can we eliminate hop-by-hop error detection?

• Is a whole-file checksum, alone, enough?

23



End-to-End Principle
• Only the application at communication endpoints

can completely and correctly implement a function

• Processing in middle alone cannot provide function
– Processing in middle may, however, be an 

important performance optimization

• Engineering middle hops to provide guaranteed 
functionality is often wasteful of effort, inefficient

24



Perils of lower-layer implementation
• Entangles application behavior with network internals

• Suppose each IP router reliably transmitted to next hop
– Result: Lossless delivery, but variable delay

• ftp: Okay, move huge file reliably (just end-to-end 
TCP works fine, too, though)

• Skype: Terrible, jitter packets when a few corruptions 
or drops not a problem anyway

• Complicates deployment of innovative applications
– Example: Phone network v. the Internet

25



Advantages of lower-layer implementation
• Can improve end-to-end system performance

• Each application author needn’t recode a shared 
function

• Overlapping error checks (e.g., checksums) at all 
layers invaluable in debugging and fault diagnosis

• If end systems not cooperative (increasingly the case), 
only way to enforce resource allocation!

26



End-to-end violation: Firewalls

• Firewalls clearly violate the e2e principle
– Endpoints are capable of deciding what traffic to ignore
– Firewall entangled with design of network and higher 

protocol layers and apps, and vice-versa
• e.g.: New ECN bit to improve TCP (wireless) congestion 

control; many firewalls filter all such packets!

• Yet, we probably do need firewalls

Our network
X
FirewallInternet

27



Summary: End-to-End principle
• Many functions must be implemented at application 

endpoints to provide desired behavior
– Even if implemented in “middle” of network

• End-to-end approach decouples design of components in 
network interior from design of applications at edges
– Some functions still benefit from implementation in 

network interior at cost of entangling interior, edges

• End-to-end principle is not sacred; it’s just a way to think 
critically about design choices in communication systems

28



1. Layering and the End-to-End Argument

2. Transmission Control Protocol (TCP) primer

3. Split Connection TCP over wireless

Today

29



• Layer-four protocol for reliable transport

– Sending app offers a sequence of bytes: d0, d1, d2, …

– Receiving app sees all bytes arrive in same sequence: 
d0, d1, d2…
• Result: Reliable byte stream transport between 

endpoints on the internet

• Each such byte stream is called a connection, or flow

TCP: Connection-Oriented,
Reliable Byte Stream Transport

30



• Recover from data loss

• Avoid receipt of duplicated data

• Preserve data ordering

• Provide integrity against corruption

• Avoid sending faster than receiver can accept data

• Avoid congesting network

TCP’s Many End-to-End Goals

31



• Network drops packets, so to ensure delivery:
– Sender attaches sequence number (seqno) to each 

data packet sent; keeps copy of sent packet
– Receiver returns acknowledgement (ACK) to sender 

for each data packet received, containing seqno

• Sender sets a retransmit timer on each transmission
– If timer expires < ACK returns: retransmit that packet
– If ACK returns, cancel timer, forget that packet

• How long should the retransmit timer be?

Fundamental Problem:
Ensuring At-Least-Once Delivery

32



• Expected time for ACK to return is round-trip time (RTT)
– End-to-end delay for data to reach receiver, then its ACK 

to reach sender

• Strawman: use fixed timer (e.g., 250 milliseconds)
– What if the route/wireless conditions change?
– What if congestion occurs at one or more routers?

• Too small a value: needless retransmissions
• Too large a value: needless delay detecting loss

Fundamental Problem: Estimating RTT

Fixed timer violates E2E argument; details 
of link behavior should be left to link layer!
Hard-coded timers lead to brittle behavior 

as technology evolves

33



• Measurements of RTT readily available

– Note time t when packet sent, corresponding ACK 
returns at time t’

– RTT measurement sample:m = t’− t

• Single sample too brittle (queuing, routing dynamic)

• Adapt over time, using EWMA:

– Measurement samples: m0, m1, m2, …

– fractional weight for new measurement, α
– RTTi = ((1 − α) � RTTi-1 + α�mi)

Estimating RTT: Exponentially Weighted 
Moving Average (EWMA)

EWMA weights newest samples most
How to choose α? (TCP uses 1/8)

Is mean sufficient to capture RTT 
behavior over time? (more later)

34



How does TCP know congestion has 
occurred?
• Packet loss; binary signal

• How does TCP know that a packet loss has occurred?
– Lack of Acknowledgements à Timeouts

• How can packets get lost in wired networks?
– Buffer overflows

35



Retransmission and Duplicate Delivery
• When sender’s retransmit timer expires, two 

indistinguishable cases:
– Data packet dropped en route to receiver, or
– ACK dropped en route to sender

• In both cases, sender retransmits

• In latter case, duplicate data packet reaches receiver!

36



• Sender marks each packet with a monotonically increasing 
sequence number seqno

• Sender includes greatest ACKed seqno in its packets

• Receiver remembers only greatest received sequence 
number, drops received packets with smaller ones

Eliminating Duplicates:
Exactly-Once Delivery

Doesn’t guarantee delivery!
Properties: If delivered, then only once.

If undelivered, sender will not think delivered.
If ACK not seen, data may have been 
delivered, but sender will not know.

37



End-to-End Integrity
• Achieved by using transport checksum
• Protects against things link-layer reliability cannot:

– Router memory corruption, software bugs, &c.

• Covers data in packet, transport protocol header

• Also should cover layer-3 source and destination!
– Misdelivered packet should not be inserted into data 

stream at receiver, nor should be acknowledged
– Receiver drops packets w/failed transport checksum

38



1. Networking primer/review

2. Transmission Control Protocol (TCP) primer

3. TCP over wireless

Today

39



• Generally, TCP interprets any packet loss as a sign of 
queue congestion
– TCP sender reduces congestion window

• Wireless links operate at higher bit error rates and frame 
loss rates

• On wireless links, packet loss can also occur due to 
random channel errors, or cellular or WLAN handoffs
– Temporary loss not due to congestion
– Reducing window may be too conservative
– Leads to poor throughput

Running TCP on Wireless Links

40



Wireless can be congested, too

Bob
AliceDave Cathy

Shared wireless medium leads to a collision
of Bob and Cathy’s packets at Alice

41



Wireless: Best sender strategy
becomes unclear

Wired links:

Congestion loss Link loss

Frequent
(queue drop)

Wireless link: Frequent
(collision)

Frequent
(multipath, interference)

Rare

Slow down! Maintain rate

loss

loss?
42



Fundamental question:
How to differentiate between
1. Loss due to congestion

2. Loss due to wireless link itself

Hard to do:
TCP is fundamentally an “end-to-end”

protocol: only sees a loss

43



1. Mask wireless losses from TCP sender
– Then TCP sender will not slow down

– Split Connection Approach
– TCP Snoop

2. Explicitly notify TCP sender about cause of packet loss

Two Broad Approaches

44



• Also called Indirect TCP (I-TCP)

• Segment the TCP connection into two parts:
1. TCP connection between content server and AP
2. Another connection between AP and mobile host
– No real end-to-end connection

• No changes to the TCP endpoint at the content server

Split Connection Approach

Wireless
(One hop)

Multi-hop Wired 
Internet

Access 
point (AP)

Mobile

Content server

45



Split Connection: TCP Implementation

wireless

physical

link

network

transport

application

physical

link

network

transport

application

physical

link

network

transport

application
Retr

an
sm

it
Per-TCP connection state

TCP connection 1 TCP connection 2

46



• Connection between AP and mobile need not be TCP
– Could be e.g., Selective Repeat over UDP

• Assume that the wireless part is just one hop (traditional 
cellular or wireless LAN)

• Wireless losses assumed not caused by congestion
– Not true always (e.g. collisions): Sender should slow 

down, but doesn’t

Split Connection: Considerations

47



• Consequence of breaking end-to-end connection:
– On handoff from AP 1 to AP 2, connection state must 

move from AP 1 to AP 2 

Split Connection Socket and State 
Migration

Wireless
(One hop)

Multi-hop 
Wired Internet

AP 1
MobileContent server

AP 2

48



• No changes needed in wired network or content servers

• Transmission errors on the wireless link do not propagate 
into the fixed network
– Local recovery from errors

• Possibility of using custom (optimized) transport protocol 
for the hop between AP and mobile

Split Connection: Advantages

49



• Loss of end-to-end semantics:
– ACK at TCP sender no longer means that receiver must 

have received that packet
• TCP no longer reliable if crash/bug at AP

• Large buffer space may be needed at AP

• AP must maintain per-TCP connection state

• State must be forwarded to new AP on handoff
– May cause higher handoff latency

Split Connection: Critique

50



Friday Precept
Python Intro, Signal Processing Primer,

Lab 1/Part 0 Intro
Location: 87 Prospect Street, Room 065

Tuesday
Transport over Wireless I: Snoop 

and Explicit Loss Notification

51


