
COS426 Precept
Rasterization

Presented by: Kyle Genova

GUI & Demo

http://localhost:8080/

Perspective Projection

x

y

z

Near and Far Planes

n and f are usually positive values. But the near plane is
located at –n and the far plane is located at –f.

Graphics Projection Transform

• Map x-component of a point from range [l,r] to range [-1, 1]
• Map y-component of a point from range [b,h] to range [-1, 1]
• Map z-component of a point from range [near, far] to range [-1, 1]
• This matrix does the transformation:

The Projection Matrix
• What is the fourth dimension?

• This matrix is in homogeneous form and it should be multiplied with 4D
homogeneous coordinates.

• To lift a 3D nonhomogeneous coordinate, (x,y,z)^T -> (x, y, z, 1)^T. Then
you get (x’, y’, z’, w) after a transformation.

• To project a 4D homogeneous coordinate to a 3D nonhomogeneous
coordinate: (x’, y’, z’, w)-> (x’/w, y’/w, z’/w)

• if camera space z is outside (near, far), skip the triangle because it
shouldn’t be seen.

Changing Camera Pose
• This projection matrix assumes the camera is at the world origin

pointing down -z. What if the camera has an arbitrary pose?
• We represent the pose of the camera in the world space as: [R|t],

also in homogeneous form (4x4 matrix). [R|t] transforms a point
represented in the camera coordinate system to the world
coordinate system.

• But we want to transform a point in the world coordinate system
to the camera coordinate system. So we simply apply the inverse
of [R|t].

• In the code: viewMat := projMat * ([R|t])^-1

Barycentric Coordinates

• Any point in the triangle can be represented as a convex
combination of the three vertices

• Q is a linear combination of A2 and A3
• P is a linear combination of Q and A1

Barycentric Coordinates
See this article for an efficient 2D algorithm:

 https://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

Barycentric Interpolation Uses

•Weight average of the values on the 3 coordinates
• Interpolate z coordinate
• Interpolate color
• Interpolate normal direction
• Interpolate texture coordinates

Pipeline of Rendering a Triangle

In the world coordinate
system: verts[], normals[],
uvs[](optional),
material(optional).

In the world coordinate
system: verts[], normals[],
uvs[](optional),
material(optional).
In the camera coordinate
system: projectedVerts[].

Pipeline of Rendering a Triangle (Flat Shader)
For a pixel (x, y) in the bounding box:

1. determine whether it’s inside the
triangle (barycentric
coordinates).if not, go to the next
pixel.

2. use barycentric coordinates to
interpolate z’/w for the pixel.

3. If z’/w is not smaller(closer) than
zBuffer[x][y], go to the next pixel.

4. If the pixel survives, render the
pixel!

Render a Pixel
• To render a pixel, we need the following ingredients.

• normal of the pixel in the world coordinate system (interpolate using the
three vertex normals and barycentric coordinates).

• position of the pixel in the world coordinate system (interpolate using the
three vertex positions and barycentric coordinates).

• view position (where your camera/eye is, in the world coordinate system).
• light position(s) (where the light source is, in the world coordinate

system).
• material of the pixel:

• case 1: material is uniform or per-vertex (k_a, k_d, k_s, shininess).
• case 2: texture maps. (we need uv coordinates to look up k_a, k_d,

k_s, shininess of the pixel). uv coordinates can also be interpolated
using the three vertex uv coordinates and barycentric coordinates).

UV coordinates

• Can be computed automatically (a lot of papers). None of them is
perfect.

• Usually generated with the help of 3d modelers.
• They specify the location of a vertex in the texture map.
• Not defined for all meshes! Make sure to check whether uvs[] is

defined or not.

