COS 426 : Precept 4
Half-Edge

Agenda

- Assignment 2 description
- Half-edge data structure
- Traversal

- Modification

Assignment 2

- Part 1 - Analysis
- Implement traversal operations
. Calculate mesh properties
- Vertex normal, avg. edge length, etc.
- Part 2 - Filters
- Filters and Warps similar to assignment 1

- Topological modifiers

Meshes

- Images had implicit adjacency information

. Grid around a pixel
- Easy to express operations
- What about meshes?

- How to apply smoothing?

VAl
Y

//\

Meshes

- Meshes can be quite dense

—-—

Meshes

- How to access adjacency information quickly?

. /
One - Ring Neighborhood

Half-Edge Data Structure

Half Edge

Vertex Position Half-Edge
Opposite Outgoing
Half-Edge Half-Edge
Face
Next

Half-Edge

Half-Edge Data Structure

Half- Edg m

LN

Half-Edge Data Structure

One of the two outgoing edges
will be used

Half-Edge Data Structure

Face

One of the three edges
will be used

Half-Edge Visualization

LSOO, 2 o s> T Vg b) : 8 ¥ ’
Y cocorer: AN e WAt v Y RGO Lar , ; AL e WP Bt Y AL

C I localhost:8000/index.htmi?Base_Mesh=cube.obj&Display_Settings=true;true;fiat;false;false;true;false;true;false

7~ Bus Schedule [Bb] Blackboard [COS426 Latex Adobe Prerelease | - PrincetonStalker \::v C0S426: 2016 v:-/ CO08426: 2015 7 Assignment 2 - Exz

Batch Mode ~ History

* Transformations v 1: Base Mesh

* Warps mesh m— <

eRIN et D> » Filters ~ 2: Display Settings

* Topology show labels v

* Subdivision show halfedge @&

Close Controls shading w

vert normals []

o~

L~

face normals []
show grid v
showallverts
show axes v

vert colors []

Close Controls

60 FPS (37-60)

Traversal

N \/\//
VAVA! >
AV

Traversal

- How to get one-ring neighbors?

original _he = vertex.he;
he = original_he;
do {

// do something with data
he = he.opposite.next;
} while (he != original_he)

Assignment will ask you for other kind of adjacency queries

Vertices around Face, Faces around Vertex etc.

Traversal

- Vertex Normals are defined as weighted average of
adjacent faces (weighted by face area)

- How would you compute vertex normals given per face
normal and area?

Half-Edge / \
Vertex w‘

Opposite ®
Half-Edge %
Face

Next /

Half-Edge

Traversal

- Vertex Normals are defined as weighted average of
adjacent faces (weighted by face area)

original_he = vertex.he;
he = original_he;
do {
// do something with data

he = he.opposite.next;
} while (he !=original_he)

Traversal

- Vertex Normals are defined as weighted average of
adjacent faces (weighted by face area)

. (Can also be done by using facesOnVertex)

original _he = vertex.he;
he = original_he;
v_normal.set(0, 0, 0);
do {
f normal = he.face.normal;

area = he.face.normal.area;
v_normal.add(f normal*area);
he = he.opposite.next;
} while (he !=original_he)
v_normal.normalize();

Traversal

- Similarly, in uniform Laplacian smoothing each vertex is
moved towards the average of it and its neighbors.

original_he = vertex.he;
he = original_he;
do {
// do something with data

he = he.opposite.next;
} while (he !=original_he)

Traversal

- Similarly, in uniform Laplacian smoothing each vertex is
moved towards the average of it and its neighbors.

original_he = vertex.he;
he = original_he;

avg pos.set(0,0,0);
do {

avg_pos.add(he.vertex);

he = he.opposite.next;
} while (he != original_he)
avg_pos.add(-vertex*num_neigh);
new_pos = vertex + avg_pos*delta;

Traversal

- Cotan Laplacian smoothing

avg pos.add(he.vertex); — avg pos.add(w*he.vertex);

num_neigh — total_w

— \
_— cot(a;;)+cot(B;;) \ w

Data Structure Modification

. splitEdgeMakeVert (v1, v2, 1 hel next
factor) he3 /\ B

he’

he2_next j \/ hed .

v3 = addVertex(weightedAvgPos(v1, v2, factor));

he?

nel.vertex = v3; he3.next = hel next;

ne2.vertex = v3; hed.next = he2_next;

ne3 = addHalfEdge(v3, v2, f1);

hed = addHalfEdge(v3, v1, f2); nel.opposite = hed;
ned.opposite = hel;

hel.next = he3; he2.opposite = he3;

he2.next = he4; he3.opposite = he2;

Data Structure Modification

splitFaceMakeEdge e —
(f, vi, v2, vertOnF, —

switchFaces)
he?

f2 = addFace(); ne5.next = he2;
ne3.next = heb;
he5 = addHalfEdge(v1, v2, f1); nel.next = heb;
ne6 = addHalfEdge(v2, v1, 2); neb.next = hed;
ne>.opposite = heb; f1.halfedge = hes;
neb.opposite = he>; f2.halfedge = hes;

Remember to re-link hed4 and he1 to point to 2

Data Structure Modification

- How would you go about subdividing a quad face?

.+ You're given split edge and split face

- Just use those - guaranteed validity of dataset after use!
. Part of the assignment

- Think about It for next week!

>

