
COS 426 : Precept 4

Half-Edge

Agenda
• Assignment 2 description

• Half-edge data structure

• Traversal

• Modification

Assignment 2
• Part 1 - Analysis

• Implement traversal operations

• Calculate mesh properties

• Vertex normal, avg. edge length, etc.

• Part 2 - Filters

• Filters and Warps similar to assignment 1

• Topological modifiers

Meshes
• Images had implicit adjacency information

• Grid around a pixel

• Easy to express operations

• What about meshes?

• How to apply smoothing?

Meshes
• Meshes can be quite dense

Meshes
• How to access adjacency information quickly?

One - Ring Neighborhood

Half-Edge Data Structure

Half Edge Vertex Face

Vertex Position Half-Edge

Opposite

Half-Edge

Outgoing

Half-Edge
…

Face …

Next

Half-Edge

Half-Edge Data Structure

Half-Edge

Vertex

Opposite

Half-Edge

Face

Next

Half-Edge

Half-Edge Data Structure

Vertex

Location

Outgoing

Half-Edge

…

One of the two outgoing edges

will be used

Half-Edge Data Structure

Face

Half-Edge

…

One of the three edges

will be used

Half-Edge Visualization

Traversal
• How to get one-ring neighbors?

Traversal
• How to get one-ring neighbors?

original_he = vertex.he;
he = original_he;
do {

// do something with data
he = he.opposite.next;

} while (he != original_he)

• Assignment will ask you for other kind of adjacency queries

• Vertices around Face, Faces around Vertex etc.

Traversal
• Vertex Normals are defined as weighted average of

adjacent faces (weighted by face area)

• How would you compute vertex normals given per face

normal and area?

Half-Edge

Vertex

Opposite

Half-Edge

Face

Next

Half-Edge

Traversal
• Vertex Normals are defined as weighted average of

adjacent faces (weighted by face area)

original_he = vertex.he;
he = original_he;
do {

// do something with data
he = he.opposite.next;

} while (he != original_he)

Traversal
• Vertex Normals are defined as weighted average of

adjacent faces (weighted by face area)

• (Can also be done by using facesOnVertex)

original_he = vertex.he;
he = original_he;
v_normal.set(0, 0, 0);
do {

f_normal = he.face.normal;
area = he.face.normal.area;
v_normal.add(f_normal*area);
he = he.opposite.next;

} while (he != original_he)
v_normal.normalize();

Traversal
• Similarly, in uniform Laplacian smoothing each vertex is

moved towards the average of it and its neighbors.

original_he = vertex.he;
he = original_he;
do {

// do something with data
he = he.opposite.next;

} while (he != original_he)

Traversal
• Similarly, in uniform Laplacian smoothing each vertex is

moved towards the average of it and its neighbors.

original_he = vertex.he;
he = original_he;
avg_pos.set(0, 0, 0);
do {

avg_pos.add(he.vertex);
he = he.opposite.next;

} while (he != original_he)
avg_pos.add(-vertex*num_neigh);
new_pos = vertex + avg_pos*delta;

Traversal
• Cotan Laplacian smoothing

avg_pos.add(he.vertex); avg_pos.add(w*he.vertex);

num_neigh total_w

𝑤 =
cot 𝛼𝑖𝑗 +cot 𝛽𝑖𝑗

2

Data Structure Modification
• splitEdgeMakeVert (v1, v2,

factor)

v3 = addVertex(weightedAvgPos(v1, v2, factor));

he1.vertex = v3;
he2.vertex = v3;

he3 = addHalfEdge(v3, v2, f1);
he4 = addHalfEdge(v3, v1, f2);

he1.next = he3;
he2.next = he4;

he3.next = he1_next;
he4.next = he2_next;

he1

he1_next

he2

he3

he4he2_next

f1

f2

he1.opposite = he4;
he4.opposite = he1;
he2.opposite = he3;
he3.opposite = he2;

Data Structure Modification
• splitFaceMakeEdge

(f, v1, v2, vertOnF,

switchFaces)

f2 = addFace();

f1

f2

he5 = addHalfEdge(v1, v2, f1);
he6 = addHalfEdge(v2, v1, f2);
he5.opposite = he6;
he6.opposite = he5;

he1

he4
he2

he3

he5

he6

he5.next = he2;
he3.next = he5;
he1.next = he6;
he6.next = he4;

f1.halfedge = he5;
f2.halfedge = he6;

Remember to re-link he4 and he1 to point to f2

Data Structure Modification
• How would you go about subdividing a quad face?

• You’re given split edge and split face

• Just use those - guaranteed validity of dataset after use!

• Part of the assignment

• Think about it for next week!

