COS426 Precept3

Image Processing

Presented by: Linguang Zhang
Edge Filter vs Sharpen Filter

\[
\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1 \\
\end{array}
\]

\[
\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1 \\
\end{array}
\]

Edge Filter
Sharpen Filter

\[\text{Convolution}(\text{Image}, \text{Sharpen Filter}) = \text{Convolution}(\text{Image}, \text{Edge Filter}) + \text{Image}\]
Histogram Matching / Equalization

pdf

cdf
Histogram Matching / Equalization
Histogram Matching / Equalization

Matching

\[x' = \arg \min_i |CDF(x) - CDF_{ref}(i)| \]

Convert back to [0, 1]: \[x' = \frac{x'}{L-1} \]
Morph

• Basic concepts
 • transform the background image to the foreground image
 • alpha = 0: show background
 • alpha = 1: show foreground
 • alpha is the blending factor / timestamp

• General approach
 • specify correspondences (morphLines.html)
 • create an intermediate image with interpolated correspondences (alpha)
 • warp the background image to the intermediate image
 • warp the foreground image to the intermediate image
 • blend using alpha
Blending

alpha = 0.5 (also the blending factor)
Blending

alpha = 0.5 (also the blending factor)
Interpolate Morph Lines

current_line[i] = (1 – alpha) * background_lines[i] + alpha * foreground_lines[i]
Morph

GenerateAnimation(Image₀, L₀[...], Image₁, L₁[...])
begin
 foreach intermediate frame time t do
 for i = 1 to number of line pairs do
 L[i] = line t-th of the way from L₀[i] to L₁[i]
 end
 Warp₀₀ = WarpImage(Image₀₀, L₀, L)
 Warp₁₁ = WarpImage(Image₁₁, L₁, L)
 foreach pixel p in FinalImage do
 Result(p) = (1-t) Warp₀₀ + t Warp₁₁
 end
end
Warp Image

Q - P = (x, y)
Perpendicular(Q - P) = (y, -x)

Warped background or foreground (currently black)

Pixel source (background or foreground)
Warp Image

- \(u = \frac{(X-P) \cdot (Q-P)}{|Q-P|^2} \)
- \(v = \frac{(X-P) \cdot \text{Perpendicular}(Q-P)}{|Q-P|} \) (unit vector)
- \(X' = P' + u \cdot (Q' - P') + \frac{v \cdot \text{Perpendicular}(Q' - P')}{|Q' - P'|} \)
- \(\text{dist} = \text{shortest distance from } X \text{ to } PQ \)
 - \(0 \leq u \leq 1: \text{dist} = |v| \)
 - \(u < 0: \text{dist} = ||X - P|| \)
 - \(u > 1: \text{dist} = ||X - Q|| \)
- \(\text{weight} = \left(\frac{\text{length}^p}{a + \text{dist}} \right)^b \)
 - we use \(p = 0.5, a = 0.01, b = 2 \)
Warp Image

For each pixel X in the destination

$DSUM = (0,0)$

$weightsum = 0$

For each line P_iQ_i

- calculate u,v based on P_iQ_i
- calculate X'_i based on u,v and $P_i'Q_i'$
- calculate displacement $D_i = X'_i - X_i$ for this line
- $dist =$ shortest distance from X to P_iQ_i
- $weight = (\text{length}^p / (a + dist))^b$
- $DSUM += D_i \ast weight$
- $weightsum += weight$

$X' = X + DSUM / weightsum$

destinationImage$(X) = sourceImage(X')$
Q&A