More on Transformations

COS 426, Spring 2018
Princeton University
Agenda

Grab-bag of topics related to transformations:

• General rotations
 - Euler angles
 - Rodrigues’s rotation formula

• Maintaining camera transformations
 - First-person
 - Trackball

• How to transform normals
3D Coordinate Systems

- **Right-handed** vs. **left-handed**
3D Coordinate Systems

• **Right-handed** vs. **left-handed**

• Right-hand rule for rotations:
 positive rotation = counterclockwise rotation about axis
General Rotations

• Recall: set of rotations in 3-D is 3-dimensional
 ◦ Rotation group SO(3)
 ◦ Non-commutative
 ◦ Corresponds to orthonormal 3×3 matrices with determinant = +1

• Need 3 parameters to represent a general rotation (Euler’s rotation theorem)
Euler Angles

- Specify rotation by giving angles of rotation about 3 coordinate axes
- 12 possible conventions for order of axes, but one standard is Z-X-Z
Euler Angles

- Another popular convention: X-Y-Z
- Can be interpreted as yaw, pitch, roll of airplane
Rodrigues’s Formula

• Even more useful: rotate by an arbitrary angle (1 number) about an arbitrary axis (3 numbers, but only 2 degrees of freedom since unit-length)
Rodrigues’s Formula

- An arbitrary point \mathbf{p} may be decomposed into its components along and perpendicular to \mathbf{a}

$$
\mathbf{p} = \mathbf{a} (\mathbf{p} \cdot \mathbf{a}) + [\mathbf{p} - \mathbf{a} (\mathbf{p} \cdot \mathbf{a})]
$$
Rodrigues’s Formula

- Rotating component *along* \mathbf{a} leaves it unchanged.
- Rotating component *perpendicular* to \mathbf{a} (call it \mathbf{p}_\perp) moves it to $\mathbf{p}_\perp \cos \theta + (\mathbf{a} \times \mathbf{p}_\perp) \sin \theta$.
Rodrigues’ Formula

- Putting it all together:

\[Rp = a \,(p \cdot a) + p_\perp \cos \theta + (a \times p_\perp) \sin \theta \]

\[= aa^T p + (p - aa^T p) \cos \theta + (a \times p) \sin \theta \]

- So: \[R = aa^T + (I - aa^T) \cos \theta + [a]_x \sin \theta \]

where \([a]_x\) is the “cross product matrix”

\[
[a]_x = \begin{pmatrix}
0 & -a_z & a_y \\
a_z & 0 & -a_x \\
-a_y & a_x & 0
\end{pmatrix}
\]

Rotating One Direction into Another

- Given two directions \(\mathbf{d}_1, \mathbf{d}_2 \) (unit length), how to find transformation that rotates \(\mathbf{d}_1 \) into \(\mathbf{d}_2 \)?
 - There are many such rotations!
 - Choose rotation with minimum angle

- Axis = \(\mathbf{d}_1 \times \mathbf{d}_2 \)

- Angle = \(\text{acos}(\mathbf{d}_1 \cdot \mathbf{d}_2) \)

- More stable numerically: \(\text{atan2}(|\mathbf{d}_1 \times \mathbf{d}_2|, \mathbf{d}_1 \cdot \mathbf{d}_2) \)
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Camera Coordinates

Canonical camera coordinate system

- Convention is right-handed (looking down \(-z\) axis)
- Convenient for projection, clipping, etc.

Camera up vector maps to Y axis
Camera back vector maps to Z axis (pointing out of page)
Camera right vector maps to X axis
Viewing Transformation

- Mapping from world to camera coordinates
 - Eye position maps to origin
 - Right vector maps to +X axis
 - Up vector maps to +Y axis
 - Back vector maps to +Z axis
Finding the viewing transformation

- We have the camera (in world coordinates)
- We want T taking objects from world to camera

$$p^c = T \ p^w$$

- Trick: find T^{-1} taking objects in camera to world

$$p^w = T^{-1} p^c$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$
Finding the Viewing Transformation

• Trick: map from camera coordinates to world
 ○ Origin maps to eye position
 ○ Z axis maps to Back vector
 ○ Y axis maps to Up vector
 ○ X axis maps to Right vector

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
w'
\end{bmatrix} =
\begin{bmatrix}
 R_x & U_x & B_x & E_x \\
 R_y & U_y & B_y & E_y \\
 R_z & U_z & B_z & E_z \\
 R_w & U_w & B_w & E_w
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix}
\]

• This matrix is T^{-1} so we invert it to get T … easy!
Maintaining Viewing Transformation

For first-person camera control, need 2 operations:

• Turn: rotate(θ, 0, 1, 0) in local coordinates

• Advance: translate(0, 0, $-v^*\Delta t$) in local coordinates

• Key: transformations act on local, not global coords

• To accomplish: right-multiply by translation, rotation

$$M_{\text{new}} \leftarrow M_{\text{old}} T_{-v^*\Delta t,z} R_{\theta,y}$$
Maintaining Viewing Transformation

Object manipulation: “trackball” or “arcball” interface

- Map mouse positions to surface of a sphere
- Compute rotation axis, angle
- Apply rotation to global coords: left-multiply

\[M_{\text{new}} \leftarrow R_{\theta,a} M_{\text{old}} \]
Agenda

Grab-bag of topics related to transformations:

• General rotations
 ◦ Euler angles
 ◦ Rodrigues’s rotation formula

• Maintaining camera transformations
 ◦ First-person
 ◦ Trackball

• How to transform normals
Transforming Normals

Normals do not transform the same way as points!

- Not affected by translation
- Not affected by shear perpendicular to the normal
Transforming Normals

• Key insight: normal remains perpendicular to surface tangent

• Let \mathbf{t} be a tangent vector and \mathbf{n} be the normal

 $$\mathbf{t} \cdot \mathbf{n} = 0 \quad \text{or} \quad \mathbf{t}^T \mathbf{n} = 0$$

• If matrix \mathbf{M} represents an affine transformation, it transforms \mathbf{t} as

 $$\mathbf{t} \rightarrow \mathbf{M}_L \mathbf{t}$$

 where \mathbf{M}_L is the linear part (upper-left 3×3) of \mathbf{M}
Transforming Normals

• So, after transformation, want

\[(M_L t)^T n_{\text{transformed}} = 0\]

• But we know that

\[t^T n = 0\]

\[t^T M_L^T (M_L^T)^{-1} n = 0\]

\[(M_L t)^T (M_L^T)^{-1} n = 0\]

• So,

\[n_{\text{transformed}} = (M_L^T)^{-1} n\]
Transforming Normals

• Conclusion: normals transformed by inverse transpose of linear part of transformation

• Note that for rotations, inverse = transpose, so inverse transpose = identity
 ◦ normals just rotated
COS 426 Midterm exam

- Thursday, 3/15
- Regular time/place: 3:00-4:20, Friend 006
- Covers everything through week 5: color, image processing, shape representations transformations (but not today’s lecture)
 - Also responsible for knowing all required parts of first two programming assignments
- Closed book, no electronics, one page of notes / formulas