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Syllabus

I. Image processing
II. Modeling
III. Rendering
IV. Animation

Image	Processing
(Rusty	Coleman,	CS426,	Fall99)

Modeling
(Denis	Zorin,	CalTech) Animation

(Angel,	Plate	1)

Rendering
(Michael	Bostock,	CS426,	Fall99)
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What is 3D Modeling?

• Topics in computer graphics
• Imaging = representing 2D images
• Modeling = representing 3D objects
• Rendering = constructing 2D images from 3D models
• Animation = simulating changes over time
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Blender demo reel 2016 (musimduit)

`
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Modeling

• How do we ...
• Represent 3D objects in a computer?
• Acquire computer representations of 3D objects?
• Manipulate computer representations of 3D objects?

Stanford	Graphics	Laboratory H&B	Figure	10.46
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Modeling Background

• Scene is usually approximated by 3D primitives
• Point
• Vector
• Line segment
• Ray
• Line
• Plane
• Polygon
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3D Point

• Specifies a location
• Represented by three coordinates
• Infinitely small

typedef	struct	{
Coordinate	x;
Coordinate	y;
Coordinate	z;

}	Point; (x,y,z)

Origin
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3D Vector

• Specifies a direction and a magnitude
• Represented by three coordinates
• Magnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
• Has no location

typedef	struct	{
Coordinate	dx;
Coordinate	dy;
Coordinate	dz;

}	Vector;

(dx,dy,dz)
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3D Vector

• Dot product of two 3D vectors
• V1·V2 = ||V1 || || V2 || cos(Q)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Q
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3D Vector

• Cross product of two 3D vectors
• V1xV2 = vector perpendicular to both V1 and V2
• ||V1xV2|| = ||V1 || || V2 || sin(Q)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)

V1xV2

Q
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3D Line Segment

• Linear path between two points
• Parametric representation:

• P = P1 + t (P2 - P1),    (0 £ t £ 1)
typedef	struct	{

Point	P1;
Point	P2;

}	Segment;

P1

P2

Origin
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3D Ray

• Line segment with one endpoint at infinity
• Parametric representation: 

• P = P1 + t V,    (0 <= t < ¥)
typedef	struct	{

Point	P1;
Vector	V;

}	Ray;

P1

V

Origin
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3D Line

• Line segment with both endpoints at infinity
• Parametric representation: 

• P = P1 + t V,    (-¥ < t < ¥)

P1

typedef	struct	{
Point	P1;
Vector	V;

}	Line;

V

Origin
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Origin

3D Plane

• A linear combination of three points

P1

P3P2
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Origin

3D Plane

• A linear combination of three points
• Implicit representation: 

• P·N - d = 0, or
• ax + by + cz + d = 0

• N is the plane “normal”
• Unit-length vector
• Perpendicular to plane

typedef	struct	{
Vector	N;
Distance	d;

}	Plane;

P1

N = (a,b,c)

d

P3P2
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3D Polygon

• Set of points “inside” a sequence of coplanar points

typedef	struct	{
Point	*points;
int npoints;

}	Polygon;

Points are in counter-clockwise order
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3D Object Representations

How can this object be represented in a computer?
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3D Object Representations

How about this one?
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3D Object Representations

This one?
Wallpapersonly.net
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3D Object Representations

This one? Solidworks
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3D Object Representations

This one? The	visible	human



22

3D Object Representations

This one? FumeFx
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific
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Equivalence of Representations

• Thesis:
• Each representation has enough expressive power 

to model the shape of any geometric object
• It is possible to perform all geometric operations 

with any fundamental representation
• Analogous to Turing-equivalence

• Computers and programming languages are 
Turing-equivalent, but each has its benefits…
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation
• Animation

Data structures determine algorithms
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Why Different Representations?

Efficiency for different tasks
• Acquisition

• Range Scanning
• Rendering 
• Analysis
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition

• Computer Vision
• Rendering 
• Analysis
• Manipulation
• Animation

USC
Indiana	
University
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Why Different Representations?

Efficiency for different tasks
• Acquisition

• Tomography
• Rendering 
• Analysis
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering

• Intersection 
• Analysis
• Manipulation
• Animation

Autodesk
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Curvature,
smoothness

• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Fairing
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Parametrization
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Texture mapping
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Reduction
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Structure
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Symmetry 
detection

• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Correspondence
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Shape 
retrieval

• Manipulation
• Animation

Shao	et	al.	2011
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Segmentation
• Manipulation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis

• Composition
• Manipulation
• Animation

Lin	et	al.	2008
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation

• Deformation
• Animation

IGL
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation

• Deformation
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation

• Control
• Animation
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation

• Healing
• Animation

DGP	course	notes,	Technion
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation
• Animation

• Rigging

Animation	
Buffet
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation
• Animation

• Deformation 
transfer

Sumner	et	al.	2004
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation
• Animation

• Simulation

Physically	Based	Modelling	course	notes,	USC
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Why Different Representations?

Efficiency for different tasks
• Acquisition
• Rendering 
• Analysis
• Manipulation
• Animation

• Fabrication

DGP	course	notes,	Technion
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific
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Range Image

Set of 3D points mapping to pixels of depth image
• Can be acquired from range scanner

Brian	Curless
SIGGRAPH	99	
Course	#4	Notes

Range	Image Tesselation Range	Surface

Cyberware

Stanford



52

Point Cloud

Unstructured set of 3D point samples
• Acquired from range finder, computer vision, etc

Hoppe

HoppeMicroscribe-3D

Polhemus
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific



54

Polygonal Mesh

Connected set of polygons (often triangles)

Stanford	Graphics	Laboratory
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Subdivision Surface

Coarse mesh & subdivision rule
• Smooth surface is limit of sequence of refinements 

Zorin &	Schroeder
SIGGRAPH	99	
Course	Notes
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Parametric Surface

Tensor-product spline patches
• Each patch is parametric function
• Careful constraints to maintain continuity

FvDFH Figure	11.44

x	=	Fx(u,v)
y	=	Fy(u,v)
z	=	Fz(u,v)

uv
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Implicit Surface

Set of all points satisfying: F(x,y,z) = 0

Polygonal	Model Implicit	Model

Bill	Lorensen
SIGGRAPH	99

Course	#4	Notes
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific
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FvDFH Figure	12.20

Voxel grid

Uniform volumetric grid of samples:
• Occupancy

(object vs. empty space)
• Density
• Color
• Other function

(speed, temperature, etc.)

• Often acquired via
simulation or from
CAT, MRI, etc.

Stanford	Graphics	Laboratory
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Octree

The adaptive version of the voxel grid
• Significantly more space efficient
• Makes operations more cumbersome

Thomas	Diewald



61

BSP Tree

Hierarchical Binary Space Partition with
solid/empty cells labeled

• Constructed from polygonal representations
a

b

c

d
e

f
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Binary Spatial Partition

Binary Tree

Naylor
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CSG

Constructive Solid Geometry: set operations (union, difference, 
intersection) applied to simple shapes

FvDFH Figure	12.27 H&B	Figure	9.9



63

Sweep

Solid swept by curve along trajectory

Removal	Path Sweep	Model

Bill	Lorensen
SIGGRAPH	99

Course	#4	Notes
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3D Object Representations

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific
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Scene Graph

Union of objects at leaf nodes

Bell	Laboratories

avalon.viewpoint.com
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Application Specific

Apo	A-1
(Theoretical	Biophysics	Group,

University	of	Illinois	at	Urbana-Champaign)

Architectural	Floorplan
(CS	Building,	Princeton	University)
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Taxonomy of 3D Representations

Discrete Continuous

Combinatorial Functional

Parametric ImplicitTopological Set Membership 

Voxels,
Point sets

Mesh
Subdivision

BSP Tree
Cell Complex

Bezier
B-Spline

Algebraic

Naylor

3D Shape
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Equivalence of Representations

• Thesis:
• Each representation has enough expressive power 

to model the shape of any geometric object
• It is possible to perform all geometric operations 

with any fundamental representation
• Analogous to Turing-equivalence

• Computers and programming languages are 
Turing-equivalent, but each has its benefits…
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Computational Differences

• Efficiency
• Representational complexity (e.g. surface vs. volume)
• Computational complexity (e.g. O(n2) vs O(n3) )
• Space/time trade-offs  (e.g. tree data structures)
• Numerical accuracy/stability (e.g. degree of polynomial)

• Simplicity
• Ease of acquisition
• Hardware acceleration
• Software creation and maintenance

• Usability
• Designer interface vs. computational engine
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Upcoming Lectures

• Points
• Range	image
• Point	cloud

• Surfaces
• Polygonal	mesh
• Subdivision	
• Parametric
• Implicit

• Solids
• Voxels
• BSP	tree
• CSG
• Sweep

• High-level	structures
• Scene	graph
• Application	specific


