Sampling, Resampling,
and Warping

Adam Finkelstein
Princeton University
COS 426, Spring 2018

-

Digital Image Processing

~N

SR RUMINE)

- Changing pixel values
= Linear: scale, offset, etc.

= Nonlinear: gamma,
saturation, etc.

= Histogram equalization

* Filtering over
neighborhoods
= Blur & sharpen
= Detect edges
= Median
= Bilateral filter

Moving image locations
= Scale
= Rotate
= Warp

Combining images
= Composite
= Morph

Quantization

Spatial / intensity
tradeoff
= Dithering

-

Image Warping

- Move pixels of an image

Source 1mage

2 A
Destination 1image

-

Image Warping

- Issues:
o Specifying where every pixel goes (mapping)

> :
4
3

.

% |
.‘. N 3
’ ~ .

:

',‘

@ 3

- L L J
Bets . 7 L /
‘ s - RO / /

Source image Destination image

J

-
Image Warping

* |Issues:
o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

OOOOOO(’-

00 QOO

U
......

Source image Destination image

-
Image Warping

* |Issues:
» Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

OOOOOO’

; i /
.......
| ”

\\\\\\
0000000000
> v

L] (]
N
......

N |
e \eme © o @ "epyleln o
v o /

Source image Destination image

-

Two Options

* Forward mapping

Source image

* Reverse mapping

L . PP PPN TE TSP SIS

L A NP PRI SSPPPRTPIN TETSPPPILN PSSR

Source image

Destination image

-

Mapping

« Define transformation

o Describe the destination (x,y) for every source (u,v)
(actually vice-versa, if reverse mapping)

-

Parametric Mappings

-« Scale by factor-
o X = factor™ u
o Yy = factor* v

-

Parametric Mappings

* Rotate by ® degrees:
o X =UC0SO - vsSin®
o Yy =USIN® + vCcosO

Rotate
30

-

Parametric Mappings

2

- Shear in X by factor:
o X =U+ factor™ v

oy=V Vv

- Shearin Y by factor:

o X=U

o y=V+factor*u Vv

Shear X

=
=

-

Other Parametric Mappings

* Any function of u and v:
o X =1 (u,v) -
oy =1,(u,v)

Fisye

C0OS426 Examples

Aditya Bhaskara Wei Xiang

-

More COS426 Examples

Sid Kapur

Michael Oranato

Eirik Bakke

-

Point Correspondence Mappings

\

- Mappings implied by correspondences:
o A A
o BB’
o C&C

-

~N

%?
m‘tﬂmmﬁ

Line Correspondence Mappings

- Beier & Neeley use pairs of lines to specify warp

Beier & Neeley

SIGGRAPH 92
J

-
Image Warping

* |Issues:
o Specifying where every pixel goes (mapping)
» Computing colors at destination pixels (resampling)

OOOOOO’

; i /
.......
| ”

\\\\\\
0000000000
> v

L] (]
N
......

N |
e \eme © o @ "epyleln o
v 1 {

Source image Destination image

Digital Image Processing

When implementing operations that move pixels,
must account for the fact that digital images are
versions of continuous ones

-
Sampling and Reconstruction

A

(ot~ e

SR RUMINE)

Continuous function

A,

A

>

Sampling

Discrete samples
2 o

e

>

-

Sampling and Reconstruction

(ot~ e

SR RUMINE)

A

Continuous function

A,

>

Discrete samples
2 o

e

>

Continuous function

2%

>

Sampling

Reconstruction

-

Sampling and Reconstruction

Original
signal

l Sampling

Reconstruction

Reconstructed
signal

Figure 19.9 FvDFH
J

-

Sampling Theory

How many samples are enough?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

What happens when we use too few samples?

4 Original function

/ Reconstructed function

2 S
JM/

-

Sampling Theory

What happens when we use too few samples?
o Aliasing: high frequencies masquerade as low ones

T

Specifically, in graphics:
o Spatial aliasing
o Temporal aliasing

Figure 14.17 FvDFH

-

Spatial Aliasing

Artifacts due to limited spatial resolution

a
n
>

-

Spatial Aliasing

Artifacts due to limited spatial resolution

(Barely) adequate sampling

-

Spatial Aliasing

Artifacts due to limited spatial resolution

-

Spatial Aliasing

Artifacts due to

iImited spatial reso

ution

“Jaggies”

-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

-
Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Inadequate

-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate?

-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Inadequate

-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate

-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate

-
Spectral Analysis

(0
SR RUMINE)

- Spatial domain: - Frequency domain:
o Function: f(x) o Function: F(u)

o Filtering: convolution o Filtering: multiplication
J &) |F @)

- o X <ww\/\/m\/\w>u

Any signal can be written as a
sum of periodic functions.

-

Fourier Transform

J @)

.

u

VI
v

vir

Sn T 1.57 2n

Figure 2.6 Wolberg

-

Fourier Transform

* Fourier transform:
F(u) = f f(x)e ™ dx

* |nverse Fourier transform:

£(x) = } F(u)e™ ™ di

Sampling Theorem

A signal can be reconstructed from its samples
iff it has no content > %2 the sampling frequency
— Shannon

« The minimum sampling rate for a bandlimited
function is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
That frequency is called the bandwidth.

-

Antialiasing

- Sample at higher rate
o Not always possible
o Doesn’t always solve the problem

- Pre-filter to form bandlimited signal
o Use low-pass filter to limit signal to < 1/2 sampling rate
o Trades blurring for aliasing

-

Image Processing

Consider scaling the image (or, equivalently,
reducing resolution)

O 000 00000000 O0OO0O0OOO0OO0OO
O O O O O O O O OECEE O O O O OO O O
O O O O O O I IR I O O O O O O

[OlNclclclNclFe © ¢ ¢ o o o o o O OO0 O O
O O O O QNI I TN TN RN T I S S OO0 O O

O O O O (NI ORXIERO O O O
O O O O IO] O O O
O O O O IO o I OO0 0O

© O O O JONCECEERO O OMCENRONY O
O
............
...........

..........

..........

.........
......

Original 1mage 1/4 resolution

-

Image Processing

l Real world

Sample

| Discrete samples (pixels)

Reconstruct

Reconstructed function

Transform

4 Transformed function

Filter

Bandlimited function

A

Sample
| Discrete samples (pixels)

Reconstruct
l Display

-

Image Processing

l Real world

>

Continuous Function

-

Image Processing

Sample
l Discrete samples (pixels)

? °)

iR

Discrete Samples

-

Image Processing

Reconstruct
l Reconstructed function

A

_/\/\/

Reconstructed Function

>

-

Image Processing

Transform

l Transformed function

A

%Y

Transformed Function

>

-

Image Processing

Filter
l Bandlimited function

A

— \o/

>

Bandlimited Function

-

Image Processing

Sample
l Discrete samples (pixels)

?

b

Discrete samples

-

Image Processing

Reconstruct
l Display

Display

-

Image Processing

l Real world

Sample
l Discrete samples (pixels)

Reconstruct
l Reconstructed function

Transform

l Transformed function

Filter
l Bandlimited function

Sample
| Discrete samples (pixels)

Reconstruct

l Display

ldeal resampling
requires correct filtering
to avoid artifacts

Reconstruction filter
especially important
when magnifying

Bandlimiting filter
especially important
when minifying

-

Ideal Image Processing Filter

‘ii?
M

~N

* Frequency domain

- Spatial domain

O fmax

B P PP PN

...

...... VRS 5 O S SO PPP PP PO SOPTRPPE SO Sin J'cx
...... Sinc(x) =

X

Figure 4.5 Wolberg

Practical Image Processing

l Real world

effectively
(discrete) convolution
to prevent artifacts

Sample
1 Discrete samples (pixels)

Reconstruct
l Reconstructed function Finite Iow-pass filters
Transform o Point sampling (bad)
l Transformed function o Box filter
Filter o Triangle filter
l Bandlimited function o Gaussian filter
Sample

1 Discrete samples (pixels)

Reconstruct
l Display

-

Point Sampling

+ Possible (poor) resampling implementation:

float Resample(src, u, v, k, w) {
int iu = round(u) ;
int iv = round(v) ;
return src(iu,iv);

}

Source 1mage Destination image

-

Point Sampling

* Use nearest sample

T

t

nput

Output

-

Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited

-

Resampling with Filter

-+ Output is weighted average of inputs:

float Resample(src, u, v, k, w)
{
float dst = 0;
float ksum = 0;
int ulo = u - w; el
for (int iu = ulo; iu < uhi; iu++) {
for (int iv = vlo; iv < vhi; iv++) {
dst += k(u,v,iu,iv,w) * src(u,v)
ksum += k(u,v,iu,iv,w);

}

} N Py o
return dst / ksum; (U,V) 5 O i f

Source image Destination image

-

Image Resampling

- Compute weighted sum of pixel neighborhood

o Output is weighted average of input, where
weights are normalized values of filter kernel (k)

k(ix,iy) represented by gray value

-

Image Resampling

- For isotropic Triangle and Gaussian filters,

K(ix,ly) is function of d and w

Filter Width = 2

-W d w
Triangle filter

k(1,))=max(1 - d/w, 0)

-

Image Resampling

- For isotropic Triangle and Gaussian filters,

K(ix,ly) is function of d and w

o Filter width chosen based on scale factor (or blur)

Filter Width = 1

/\

-W w
Triangle filter

Width of filter
affects blurriness

J

-

Gaussian Filtering

« Kernel is Gaussian function

-W W
Gaussian Function

* Drops off quickly, but
never gets to exactly 0
* In practice: compute

out tow ~ 2.5c or 3o

-
Image Resampling

~N

®

- What if width (w) is smaller than sample spacing?

A

W W

(u ,V% W Triangle filter

Filter Width < 1)

-

B

J
g4
s

Image Resampling (with width < 1) %

T e

* Reconstruction filter: Bilinearly interpolate
four closest pixels
o a = linear interpolation of src(u,,v,) and src(u,,v.,)
o b =linear interpolation of src(u,,v4) and src(u,,v,)
o dst(x,y) = linear interpolation of “a” and “b”

(U4,V2) 2 (uyVvy)
J N4 O
()O O O
u,,v b
Filter Width < 1 L (Up,V4)

-

Image Resampling (with width < 1)

~N

« Alternative: force width to be at least 1

Filter Width < 1

-

Putting it All Together

« Possible implementation of image blur:

Blur (src, dst, sigma) ({
w = 3*sigma;
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix;
float v = iy;
dst(ix,iy) = Resample(src,u,v,k,w);

Increasing sigma

-
Putting it All Together

- Possible implementation of image scale:

Scale(src, dst, sx, sy) {
w = max(1l/sx,1/sy);
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix / sx;
float v = iy / sy;
dst(ix,iy) = Resample(src,u,v,k,w);
}
}
}

Source image Destination image

-

Putting it All Together

» Possible implementation of image rotation:

Rotate (src, dst, O) {
w=x1
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {

float u ix*cos (-O) - iy*sin(-0);
float v = ix*sin(-0O) + iy*cos(-0);
dst(ix,iy) = Resample(src,u,v,k,w);

}
} A .0 _.°o Y IFra 600
} 9 LY s 1 @ s o o o
S~ o _______ o ________ o
_______________________ 00 ¢
....................... e
....................... oo
_______________________ o o X

Sampling Method Comparison

+ Trade-offs
o Aliasing versus blurring
o Computation speed

Gaussian

-

Forward vs. Reverse Mapping

* Reverse mapping:

Warp (src, dst) {
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float w # 1 / scale(ix, iy);
float u = £ 1 (ix,iy);
float v = f{*(ix,iy);
dst(ix,iy) = Resample(src,u,v,w);

) Yy 0
-, (UV) o~ [f

Source 1mage Destination image

-

Forward vs. Reverse Mapping

» Forward mapping:

Warp (src, dst) ({
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) ({
float x £, (iu,iv) ;
float y f,(iu,iv);
float w # 1 / scale(x, y);
Splat(src(iu,iv) ,x,y,k,w);

Source 1mage Destination image

-

Forward vs. Reverse Mapping

» Forward mapping:

Warp (src, dst) ({
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x £, (iu,iv) ;
float y f,(iu,iv);
float w # 1 / scale(x, y);
Splat(src(iu,iv) ,x,y,k,w);

Source 1mage Destination image

J

-

Forward vs. Reverse Mapping

» Forward mapping:
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
= f£f,(iu,iv);
float y = £,(iu,iv);
float w # 1 / scale(x, y);
for (int ix = xlo; ix <= xhi; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
}
}
}

}

Destination image

-

Forward vs. Reverse Mapping

» Forward mapping:
for (int iu 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
= f_(iu,iv);
float y = £,(iu,iv);
~ 1 / scale(x, y);
for (int ix = xlo; ix <= xhi; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
ksum(ix,iy) += k(x,y,ix, iy,w);

}
}

} ﬁ).

y R Vo RN %
for (ix = 0; ix < xmax; ix++) 6’

for (iy = 0; iy < ymax; iy+s)| OGP
dst(ix,iy) /= ksum(ix,iy)

Destination image

-

Forward vs. Reverse Mapping

« Tradeoffs?

Forward vs. Reverse Mapping

+ Tradeoffs:
o Forward mapping:
- Requires separate buffer to store weights

o Reverse mapping:

- Requires inverse of mapping function,
random access to original image

-

Summary

» Mapping
o Forward vs. reverse
o Parametric vs. correspondences

« Sampling, reconstruction, resampling
o Frequency analysis of signal content
o Filter to avoid undersampling: point, triangle, Gaussian
o Reduce visual artifacts due to aliasing
» Blurring is better than aliasing

-

Next Time...

~

(ot~ e

SR RUMINE)

- Changing pixel values
= Linear: scale, offset, etc.

= Nonlinear: gamma,
saturation, etc.

= Histogram equalization

* Filtering over
neighborhoods
= Blur & sharpen
= Detect edges
= Median
= Bilateral filter

Moving image locations
= Scale
= Rotate
= Warp

Combining images
= Composite
= Morph

Quantization

Spatial / intensity
tradeoft
= Dithering

