

Sampling, Resampling, and Warping

Adam Finkelstein

Princeton University

COS 426, Spring 2018

Digital Image Processing

- Changing pixel values
 Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Move pixels of an image

Source image

Warp

Destination image

- Issues:
 - Specifying where every pixel goes (mapping)

- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)

- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)

Two Options

Forward mapping

Reverse mapping

Mapping

- Define transformation
 - Describe the destination (x,y) for every source (u,v) (actually vice-versa, if reverse mapping)

Parametric Mappings

- Scale by factor:
 - ∘ x = factor * u
 - ∘ y = factor * v

Scale 0.8

Parametric Mappings

Rotate by ⊕ degrees:

∘ $x = u\cos\Theta - v\sin\Theta$

∘ $y = usin\Theta + vcos\Theta$

Rotate 30

u

Parametric Mappings

Shear in X by factor:

$$\circ$$
 y = v

Shear in Y by factor:

Other Parametric Mappings

- Any function of u and v:
 - $\circ x = f_x(u,v)$
 - $\circ \ \ y = f_y(u,v)$

Fish-eye

"Swirl"

"Rain"

COS426 Examples

Aditya Bhaskara

Wei Xiang

More COS426 Examples

Sid Kapur

Michael Oranato

Eirik Bakke

Point Correspondence Mappings

- Mappings implied by correspondences:
 - \circ A \longleftrightarrow A'
 - ∘ B ↔ B'
 - \circ C \leftrightarrow C'

Line Correspondence Mappings

Beier & Neeley use pairs of lines to specify warp

Beier & Neeley SIGGRAPH 92

- Issues:
 - Specifying where every pixel goes (mapping)
 - Computing colors at destination pixels (resampling)

Digital Image Processing

When implementing operations that move pixels, must account for the fact that digital images are sampled versions of continuous ones

Sampling and Reconstruction

Sampling and Reconstruction

Sampling and Reconstruction

Figure 19.9 FvDFH

How many samples are enough?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

What happens when we use too few samples?

What happens when we use too few samples?

Aliasing: high frequencies masquerade as low ones

Specifically, in graphics:

- Spatial aliasing
- Temporal aliasing

(Barely) adequate sampling

Inadequate sampling

"Jaggies"

- Strobing
- Flickering

- Strobing
- Flickering

- Strobing
- Flickering

- Strobing
- Flickering

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Sampling Theory

How many samples are enough to avoid aliasing?

- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

Spectral Analysis

- Spatial domain:
 - Function: f(x)
 - Filtering: convolution

- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication

Any signal can be written as a sum of periodic functions.

Fourier Transform

Figure 2.6 Wolberg

Fourier Transform

Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}du$$

Sampling Theorem

- A signal can be reconstructed from its samples iff it has no content ≥ ½ the sampling frequency
 Shannon
- The minimum sampling rate for a bandlimited function is called the "Nyquist rate"

A signal is *bandlimited* if its highest frequency is bounded.

That frequency is called the bandwidth.

Antialiasing

- Sample at higher rate
 - Not always possible
 - Doesn't always solve the problem
- Pre-filter to form bandlimited signal
 - Use low-pass filter to limit signal to < 1/2 sampling rate
 - Trades blurring for aliasing

Consider scaling the image (or, equivalently, reducing resolution)

Original image

1/4 resolution

Continuous Function

Discrete Samples

Reconstructed Function

Transformed Function

Bandlimited Function

Discrete samples

- Ideal resampling requires correct filtering to avoid artifacts
- Reconstruction filter especially important when magnifying
- Bandlimiting filter especially important when minifying

Ideal Image Processing Filter

Frequency domain

Spatial domain

$$Sinc(x) = \frac{\sin \pi x}{\pi x}$$

Figure 4.5 Wolberg

Resampling

Practical Image Processing

- Resampling: effectively (discrete) convolution to prevent artifacts
- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

Point Sampling

Possible (poor) resampling implementation:

```
float Resample(src, u, v, k, w) {
  int iu = round(u);
  int iv = round(v);
  return src(iu,iv);
}
```


Source image

Destination image

Point Sampling

Use nearest sample

Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited

Resampling with Filter

Output is weighted average of inputs:

```
float Resample(src, u, v, k, w)
  float dst = 0;
  float ksum = 0;
  int ulo = u - w; etc.
  for (int iu = ulo; iu < uhi; iu++) {</pre>
    for (int iv = vlo; iv < vhi; iv++) {
      dst += k(u,v,iu,iv,w) * src(u,v)
      ksum += k(u,v,iu,iv,w);
  return dst / ksum;
```

Source image

Destination image

(ix,iy)

- Compute weighted sum of pixel neighborhood
 - Output is weighted average of input, where weights are normalized values of filter kernel (k)

k(ix,iy) represented by gray value

 For isotropic Triangle and Gaussian filters, k(ix,iy) is function of d and w

$$k(i,j) = max(1 - d/w, 0)$$

Filter Width = 2

- For isotropic Triangle and Gaussian filters, k(ix,iy) is function of d and w
 - Filter width chosen based on scale factor (or blur)

Width of filter affects blurriness

Gaussian Filtering

Kernel is Gaussian function

$$G(d,\sigma) = e^{-d^2/(2\sigma^2)}$$

- Drops off quickly, but never gets to exactly 0
- In practice: compute out to $w \sim 2.5\sigma$ or 3σ

What if width (w) is smaller than sample spacing?

Image Resampling (with width < 1)

- Reconstruction filter: Bilinearly interpolate four closest pixels
 - a = linear interpolation of src(u₁, v₂) and src(u₂, v₂)
 - b = linear interpolation of $src(u_1, v_1)$ and $src(u_2, v_1)$
 - dst(x,y) = linear interpolation of "a" and "b"

Filter Width < 1

Image Resampling (with width < 1)

Alternative: force width to be at least 1

Putting it All Together

Possible implementation of image blur:

```
Blur(src, dst, sigma) {
    w ≈ 3*sigma;
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float u = ix;
            float v = iy;
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
}</pre>
```


Putting it All Together

Possible implementation of image scale:

```
Scale(src, dst, sx, sy) {
  w ≈ max(1/sx,1/sy);
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
      float u = ix / sx;
      float v = iy / sy;
      dst(ix,iy) = Resample(src,u,v,k,w);
    }
}</pre>
```


Source image

Destination image

Putting it All Together

Possible implementation of image rotation:

```
Rotate(src, dst, \Theta) {
  w \approx 1
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
       float u = ix*cos(-\Theta) - iy*sin(-\Theta);
       float v = ix*sin(-\Theta) + iy*cos(-\Theta);
       dst(ix,iy) = Resample(src,u,v,k,w);
                          Rotate
```

Sampling Method Comparison

- Trade-offs
 - Aliasing versus blurring
 - Computation speed

Point

Triangle

Gaussian

for (int ix = 0; ix < xmax; ix++) {

Reverse mapping:

Warp(src, dst) {

```
for (int iy = 0; iy < ymax; iy++) {
  float w \approx 1 / scale(ix, iy);
  float u = f_x^{-1}(ix, iy);
  float v = f_v^{-1}(ix, iy);
  dst(ix,iy) = Resample(src,u,v,w);
           (u,v)
                                           (ix,iy)
             Source image
                                     Destination image
```


Forward mapping:

Warp(src, dst) {

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    Splat(src(iu,iv),x,y,k,w);
             (iu,iv)
                                          (x,y)
              Source image
                                     Destination image
```


Forward mapping:

```
Warp(src, dst) {
  for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
      float x = f_x(iu,iv);
      float y = f_v(iu,iv);
      float w \approx 1 / scale(x, y);
      Splat(src(iu,iv),x,y,k,w);
              (iu,iv)
```


Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    for (int ix = xlo; ix \le xhi; ix++) {
      for (int iy = ylo; iy <= yhi; iy++) {
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
```

Problem?

Destination image

Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    for (int ix = xlo; ix \le xhi; ix++) {
      for (int iy = ylo; iy <= yhi; iy++) {</pre>
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
        ksum(ix,iy) += k(x,y,ix,iy,w);
                                           (x,y)
for (ix = 0; ix < xmax; ix++)
  for (iy = 0; iy < ymax; iy++)
    dst(ix,iy) /= ksum(ix,iy)
```

Destination image

Tradeoffs?

- Tradeoffs:
 - Forward mapping:
 - Requires separate buffer to store weights
 - Reverse mapping:
 - Requires inverse of mapping function, random access to original image

Summary

- Mapping
 - Forward vs. reverse
 - Parametric vs. correspondences
- Sampling, reconstruction, resampling
 - Frequency analysis of signal content
 - Filter to avoid undersampling: point, triangle, Gaussian
 - Reduce visual artifacts due to aliasing
 - » Blurring is better than aliasing

Next Time...

- - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Histogram equalization
- Filtering over neighborhoods
 - Blur & sharpen
 - Detect edges
 - Median
 - Bilateral filter

- Changing pixel values
 Moving image locations
 - Scale
 - Rotate
 - Warp
 - Combining images
 - Composite
 - Morph
 - Quantization
 - Spatial / intensity tradeoff
 - Dithering