COS 423

Theory of Algorithms

Spring 2018

Precept 8

These problems will be solved in precept.

1. Difference constraints. (CLRS 24.4) Given a vector $b = (b_1, b_2, \ldots, b_m) \in \Re^m$ and m inequalities of the form $x_i - x_j \leq b_k$, is ther a vector $x = (x_1, x_2, \ldots, x_n) \in \Re^n$ that satisfies all of the inequalities?

For example, the system at left has a solution x = (0, 2, 5, 4, 1) while the system at right has no solution (add inequalties 5, 3, 4, 8, and 2).

$x_1 - x_2$	\leq	0	$x_1 - x_2$	\leq	4
$x_1 - x_5$	\leq	-1	$x_1 - x_5$	\leq	5
$x_2 - x_5$	\leq	1	$x_2 - x_4$	\leq	-6
$x_3 - x_1$	\leq	5	$x_3 - x_2$	\leq	1
$x_4 - x_1$	\leq	4	$x_4 - x_1$	\leq	3
$x_4 - x_3$	\leq	-1	$x_4 - x_3$	\leq	5
$x_5 - x_3$	\leq	-3	$x_4 - x_5$	\leq	10
$x_5 - x_4$	\leq	-3	$x_5 - x_3$	\leq	-4

- (a) Given a system of difference constraints with m inequalities and n variables, design an algorithm to find a solution x (or report that no such solution exists). Your algorithm should take O(mn) time and use O(m+n) space.
- (b) Suppose b is integer-valued. Design an algorithm to find an integer-valued solution x (or report that no such solution exists). Your algorithm should take O(mn) time and use O(m+n) space.
- (c) How would you add an equality constraint of the form $x_i x_j = b_k$?

2. EXERCISE 7.10 in Kleinberg-Tardos (reduce capacity of edge by 1).

Repeat the exercise but do not assume that the set of edges with positive flow is acyclic.