These problems will be solved in precept.

1. **Local sequence alignment.** Often two DNA sequences are significantly different, but contain regions that are very similar and are highly conserved. Design an algorithm that takes two strings \(x = x_1 x_2 \ldots x_m \) and \(y = y_1 y_2 \ldots y_n \) as input and finds a min-cost alignment between any substring of \(x \) with any substring of \(y \). As usual, let \(\delta \) denote the gap cost and \(\alpha_{pq} \) denote the cost of aligning character \(p \) with character \(q \).

For example, consider the two strings

\[
x = TTAAAAACTTTGTTTTT, \quad y = CCCAAAAATTGGCCC
\]

and suppose the gap cost is 2, the mismatch cost for aligning two different characters is 1, and match cost is \(-1\). Then, the minimum cost of a local alignment of \(x \) and \(y \) is \(5 = 8 - 1 - 2 \) (align \(AAAACTTTGG \) with \(AAAAATTGG \)).

(a) Design an algorithm that takes \(O(m^3 n^3) \) time by solving many global sequence alignment problems.

(b) Design a dynamic programming algorithm that takes \(O(mn) \) time.

2. **Bitonic TSP.** (CLRS 15-3) Given \(n \) points in the plane \(p_1, p_2, \ldots, p_n \), the Euclidean traveling salesperson problem is to find a shortest closed tour that connects all \(n \) points, where the distance between two points is the Euclidean distance between them. The general problem is NP-hard, so we will restrict our attention to **bitonic** tours—tours that start at the rightmost point, go strictly leftward to the leftmost point, and then go strictly rightward back to the starting point. Design a dynamic-programming algorithm that finds an bitonic tour of minimum length. Your algorithm should take \(O(n^2) \) time and use \(O(n^2) \) space.

Assume that no two points have the same \(x \)-coordinate and that all operations on real numbers (such as computing the Euclidean distance between two points) take unit time.

A bitonic TSP tour of 33 points in the plane.