COS 423

Precept 3

These problems will be solved in precept.

1. Let G = (V, E) be a connected graph with positive edge weights. Let $x_1 \leq x_2 \leq \ldots \leq x_{n-1}$ be the weights of the edges in any MST T^* of G and let Let $y_1 \leq y_2 \leq \ldots \leq y_{n-1}$ be the weights of the edges in any spanning tree T of G. Prove that $x_i \leq y_i$ for every i. In other words, the i^{th} smallest edge in any MST is no larger than the i^{th} smallest edge in any spanning tree.

Using this property, quickly prove that 9 of the following 10 statements are corollaries (and identity the one that is false).

- (a) T^* is a spanning tree that minimizes the *minimum* edge weight.
- (b) T^* is a spanning tree that minimizes the maximum edge weight.
- (c) T^* is a spanning tree that minimizes the *median* edge weight.
- (d) T^* is a spanning tree that minimizes the *arithmetic mean* of the edge weights.
- (e) T^* is a spanning tree that minimizes the geometric mean of the edge weights.
- (f) T^* is a spanning tree that minimizes the harmonic mean of the edge weights.
- (g) T^* is a spanning tree that minimizes the *variance* of the edge weights.
- (h) T^* is a spanning tree that minimizes the sum of the squares of the edge weights.
- (i) T^* is a spanning tree that minimizes the *product* of the edge weights.
- (j) T^* is a spanning tree that minimizes the sum of the logarithms of the edge weights.

Prove these two corollaries as well.

- (k) Any two MSTs have the same multiset of edge weights.
- (1) If the edge weights are distinct, then there is a unique MST.
- 2. Given a directed acyclic graph G with edge costs $c_e > 0$, design a greedy algorithm to find a minimum-cost arborescence. The running time should be O(m + n).