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INTRACTABILITY III

‣ special cases: trees 

‣ approximation algorithms: vertex cover  

‣ exponential algorithms: TSP

Coping with NP-completeness

Q.  Suppose I need to solve an NP-hard problem. What should I do? 

 
A.  Sacrifice one of three desired features. 

i. Solve arbitrary instances of the problem. 

ii. Solve problem to optimality. 

iii. Solve problem in polynomial time. 

 
Coping strategies. 

i. Design algorithms for special cases of the problem.  

ii. Design approximation algorithms or heuristics. 

iii. Design algorithms that may take exponential time.
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using greedy, 
dynamic programming, 
divide-and-conquer, and 
network flow algorithms!

INTRACTABILITY III

‣ special cases: trees 

‣ approximation algorithms: vertex cover  

‣ exponential algorithms: TSP

SECTION 10.2

Independent set on trees

Independent set on trees.  Given a tree, find a max-cardinality subset of 

nodes such that no two are adjacent. 

 
Fact.  A tree has at least one node that is a leaf (degree = 1). 

 
 
 
 
Key observation.  If node v is a leaf, there exists 
a max-cardinality independent set containing v. 
Pf.  [exchange argument] 

・Consider a max-cardinality independent set S. 

・If v ∈ S, we’re done. 

・Otherwise, let (u, v) denote the lone edge incident to v. 
- if u ∉ S and v ∉ S, then S ∪  { v } is independent  ⇒  S not maximum 
- if u ∈ S and v ∉ S, then S ∪  { v } − { u } is independent  ▪
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Independent set on trees:  greedy algorithm

Theorem.  The greedy algorithm finds a max-cardinality independent  
set in forests (and hence trees). 

 
Pf.  Correctness follows from the previous key observation.  ▪ 
 
 
 
 
 
 
 
 
 
 
 
Remark.  Can implement in O(n) time by maintaining nodes of degree 1.
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INDEPENDENT-SET-IN-A-FOREST(F)                          


S ← ∅.

WHILE (F has at least 1 edge)

Let v be a leaf node and let (u, v) be the lone edge incident to v.

S ← S ∪ { v }.

F ← F  – { u, v }.

RETURN  S ∪ { nodes remaining in F }.

delete both u and v (including all incident edges)

How might the greedy algorithm fail if the graph is not a tree/forest? 

A. Might get stuck. 

B. Might take exponential time. 

C. Might produce a suboptimal independent set. 

D. Any of the above.

(resulting) graph may not have a leaf node

if algorithm can always find a leaf node, then it finds 
a max-cardinality independent set in O(m + n) time

Intractability III:  quiz 1
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Weighted independent set on trees.  Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.  

 
Greedy algorithm can fail spectacularly.

Weighted independent set on trees
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Weighted independent set on trees

Weighted independent set on trees.  Given a tree and node weights wv ≥ 0, 
find an independent set S that maximizes Σ v ∈ S wv.  

 
Dynamic-programming solution.  Root tree at some node, say r. 

・OPTin (u)  = max-weight IS in subtree rooted at u, containing u. 

・OPTout (u) = max-weight IS in subtree rooted at u, not containing u. 

・Goal:  max { OPTin (r),  OPTout (r) }. 

 
 
Bellman equation.
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OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

children(u) = { v, w, x }

  

€ 

OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑



Intractability III:  quiz 2

In which order to solve the subproblems? 

A. Preorder. 

B. Postorder. 

C. Level order. 

D. Any of the above.
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all descendants of a node processed before node

Weighted independent set on trees:  dynamic-programming algorithm

Theorem.  The DP algorithm computes max weight of an independent set 
in a tree in O(n) time.

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)                          


Root the tree T at any node r.

S ← ∅.

FOREACH (node u of T in postorder/topological order)

IF (u is a leaf)

Min[u] = wu.

Mout[u] = 0.

ELSE

Min[u]  = wu + Σv ∈ children(u) Mout[v].

Mout[u] = Σv ∈ children(u)  max { Min[v],  Mout[v] }.

RETURN  max { Min[r],  Mout[r] }.
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ensures a node is processed 
after all of its descendants

can also find independent set itself 
(not just value)

NP-hard problems on trees:  context

Independent set on trees.  Tractable because we can find a node that breaks 

the communication among the subproblems in different subtrees.
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T1 T2
T3

Trees.  VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-ISOMORPHISM, ... 

Bipartite graphs.  VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-COLOR, … 

Planar graphs.  MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...  

Bounded treewidth.  HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM, ... 

Small integers.  SUBSET-SUM, KNAPSACK, PARTITION, ...

Poly-time special cases of NP-hard problems
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INTRACTABILITY III

‣ special cases: trees 

‣ approximation algorithms: vertex cover 

‣ exponential algorithms: TSP

SECTION 11.8

Approximation algorithms

ρ-approximation algorithm. 

・Runs in polynomial time. 

・Applies to arbitrary instances of the problem. 

・Guaranteed to find a solution within ratio ρ of true optimum. 

 
Ex.  Given a graph G, can find a vertex cover that uses ≤  2 OPT(G) vertices 
in O(m + n) time. 

 
Challenge.  Need to prove a solution’s value is close to optimum value,  
without even knowing what optimum value is!
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Vertex cover

VERTEX-COVER.  Given a graph G = (V, E), find a min-size vertex cover.
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for each edge (u, v) ∈ E: 
either u ∈ S, v ∈ S, or both

vertex cover of size 4

Vertex cover:  greedy algorithm

VERTEX-COVER.  Given a graph G = (V, E), find a min-size vertex cover. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running time.  Can be implemented in O(m + n) time.
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GREEDY-VERTEX-COVER(G)                          


S   ← ∅.

E ʹ ← E.

WHILE (E ʹ ≠ ∅)
Let (u, v) ∈ E ʹ be an arbitrary edge.
M ← M ∪ {(u, v)}.
S  ← S ∪ {u} ∪ {v}.
Delete from E ʹ all edges incident to either u or v.

RETURN S.

every vertex cover must take  
at least one of these; we take both

M is a matching



Intractability III:  quiz 3

Given a graph G, let M be any matching and let S be any vertex cover. 
Which of the following must be true? 

A.  ⎢M ⎢ ≤  ⎢S ⎢

B.  ⎢S ⎢  ≤  ⎢M ⎢ 

C.  ⎢S ⎢  =  ⎢M ⎢ 

D.  None of the above. 

 
 
 
Weak duality.  ⎢M ⎢ ≤  ⎢S ⎢. 
Pf. 

・For each edge (u, v) ∈ M : S must contain either u, or v, or both. 

・Edges in M  have no common endpoints.  ▪
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strong duality holds for bipartite graphs 
(recall problem set #7)

Vertex cover:  greedy algorithm is a 2-approximation algorithm

Theorem.  Let S*  be a minimum vertex cover. Then, greedy algorithm 
computes a vertex cover S with ⎢S ⎢ ≤ 2 ⎢S* ⎢. 

Pf. 

・S is a vertex cover. 

・M is a matching. 

・⎢S ⎢ = 2 ⎢M ⎢ ≤  2 ⎢S* ⎢.  ▪ 
 

 
Corollary.  Let M *  be a maximum matching. Then, greedy algorithm 
computes a matching M with ⎢M ⎢  ≥  ½ ⎢M* ⎢. 

Pf.  ⎢M ⎢ = ½ ⎢S ⎢  ≥  ½ ⎢M * ⎢.  ▪
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weak duality

delete edge only after it’s already covered

when (u, v) added to M, all edges incident to either u or v are deleted

design

2-approximation algorithm

weak duality

Vertex cover inapproximability

Theorem.  [Dinur–Safra 2004]  If P ≠ NP, then no ρ-approximation for  
VERTEX-COVER for any ρ < 1.3606. 

 
 
 
 
 
 
 
 
 
 
 
 
Open research problem.  Close the gap. 

Conjecture.  no ρ-approximation for VERTEX-COVER for any ρ < 2.
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On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur∗ Samuel Safra†

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

1 Introduction

The basic purpose of Computational Complexity Theory is to classify computational problems
according to the amount of resources required to solve them. In particular, the most basic task
is to classify computational problems to those that are efficiently solvable and those that are
not. The complexity class P consists of all problems that can be solved in polynomial-time. It
is considered, for this rough classification, as the class of efficiently-solvable problems. While
many computational problems are known to be in P, many others, are neither known to be in
P, nor proven to be outside P. Indeed many such problems are known to be in the class NP,
namely the class of all problems whose solutions can be verified in polynomial-time. When it
comes to proving that a problem is outside a certain complexity class, current techniques are
radically inadequate. The most fundamental open question of Complexity Theory, namely, the
P vs. NP question, may be a particular instance of this shortcoming.

While the P vs NP question is wide open, one may still classify computational problems into
those in P and those that are NP-hard [Coo71, Lev73, Kar72]. A computational problem L
is NP-hard if its complexity epitomizes the hardness of NP. That is, any NP problem can be
efficiently reduced to L. Thus, the existence of a polynomial-time solution for L implies P=NP.
Consequently, showing P̸=NP would immediately rule out an efficient algorithm for any NP-
hard problem. Therefore, unless one intends to show NP=P, one should avoid trying to come
up with an efficient algorithm for an NP-hard problem.

Let us turn our attention to a particular type of computational problems, namely, optimization
problems — where one looks for an optimal among all plausible solutions. Some optimization
problems are known to be NP-hard, for example, finding a largest size independent set in a
graph [Coo71, Kar72], or finding an assignment satisfying the maximum number of clauses in a
given 3CNF formula (MAX3SAT) [Kar72].

∗ The Miller Institute, UC Berkeley. Email: iritd@cs.berkeley.edu.
† School of Mathematics and School of Computer Science, Tel Aviv University and The Miller Institute, UC

Berkeley. Research supported in part by the Fund for Basic Research administered by the Israel Academy of
Sciences, and a Binational US-Israeli BSF grant. Email: safra@math.tau.ac.il.
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Pokemon Go

Given the locations of n Pokémon, find shortest tour to collect them all.
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Traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ?
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13,509 cities in the United States
http://www.math.uwaterloo.ca/tsp

can view as a complete graph

Traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ?
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11,849 holes to drill in a programmed logic array
http://www.math.uwaterloo.ca/tsp

TSP books, apps, and movies
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Hamilton cycle reduces to traveling salesperson problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), 
is there a tour of length ≤ D ? 
 
HAMILTON-CYCLE.  Given an undirected graph G = (V, E), does there exist a 

cycle that visits every node exactly once? 

 
Theorem.  HAMILTON-CYCLE ≤ P TSP. 

Pf. 

・Given an instance G = (V, E) of HAMILTON-CYCLE, create n = ⎜V ⎜ cities  
with distance function 
 

・TSP instance has tour of length  ≤  n iff G has a Hamilton cycle.  ▪
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d(u, v) =

�
1 B7 (u, v) � E

2 B7 (u, v) /� E
<latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit><latexit sha1_base64="6OEstdg1l/HQ1vgyUxotmP5V4fA="></latexit>

Intractability III:  quiz 4

What is complexity of TSP? Choose the best answer. 

A. O(n2)

B. O*(1.657 n) 

C. O*(2n) 

D. O*(n!)
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O* hides poly(n) terms

there are ½ (n – 1)! tours

coming next

known for HAMILTON-CYCLE but not TSP

would imply P = NP

Exponential algorithm for TSP:  dynamic programming

Theorem. [Held–Karp, Bellman 1962]  TSP can be solved in O(n2 2n) time.

D y n a m i c  P r o g r a m m i n g  T r e a t m e n t  o f  t h e  

T r a v e l l i n g  S a l e s m a n  P r o b l e m *  

RICHARD }~ELLMAN 

R A N D  Corporation, Santa Monica, California 

Introd~ct ion 

The well-known travelling salesman problem is the following: " A  salesman is 
required ~,o visit once and only once each of n different cities starting from a base 
city, and returning to this city. What  path minimizes the to ta l  distance travelled 
by the salesman?" 

The problem has been treated by a number  of different people using a var ie ty  
of techniques; el. Dantzig, Fulkerson, Johnson [1], where a combination of 
ingemtity and linear programming is used, and Miller, Tucker  and Zemlin [2], 
whose experiments using an all-integer program of Gomory  did not produce 
results i~ cases with ten cities although some success was achieved in eases of 
simply four cities. The  purpose of this note is to show tha t  this problem can 
easily be formulated in dynamic programming terms [3], and resolved computa- 
tionally for up to 17 cities. For  larger numbers,  the method presented below, 
combined with various simple manipulations, may  be used to obtain quick 
approximate solutions. Results of this nature  were independently obtained by  
M. Held and R. M. Karp,  who are in the process of publishing some extensions 
and computat ional  results. 

D y n a m i c  P r o g r a m m i n g  Formula t ion  

Consider the problem as a multistage decision problem. With no loss in gen- 
erality, since the tour is a round trip, fix the origin at some city, say 0. Suppose 
that  at a certain stage of an optimal tour  starting at 0 one has reached a city 
i and there remain k cities j l ,  j~, • • • , jk to be visited before returning to 0. 
Then it is clear that ,  the tour being optimal, the path from i through j l  , j2,  • • • ,jk 
in some order and then to 0 must  be of minimum length; for, if not  the entire 
tour  could not  be optimal, since its total length could be reduced by  choosing 
a shorter path  from i through j l ,  j2,  • • • , jk to 0. 

Therefore, let us define 

f ( i ;  j ~ ,  j 2 ,  " • • , j z )  =- length of a path of minimum length from i to 0 which 

passes once and only once through each of the re- (1) 

maining k unvisited cities j l ,  j2 ,  • • • , f l  • 

Thus, if we obtuin f (0 ;  j l ,  j..,, • • • , j~), and a path which has this length, the 
problem has been solved. 

* Received March, 1961; revised July, 1961. 
61 
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HAMILTON-CYCLE is a special case

Theorem. [Held–Karp, Bellman 1962]  TSP can be solved in O(n2 2n) time. 
 
Pf.  [dynamic programming] 

・Subproblems:  c(s, v, X)  = cost of cheapest path between s and v ≠ s  
that visits every node in X exactly once (and uses only nodes in X). 

・Goal:  

・There are ≤ n 2n subproblems and they satisfy the recurrence:  
 
 
 
 

・The values c(s, v, X) can be computed in increasing 
order of the cardinality of X.   ▪

Exponential algorithm for TSP:  dynamic programming

c(s, v, X) =

�
�
�

c(s, v) B7 |X| = 2

min
u�X\{s,v}

c(s, u, X \ {v}) + c(u, v) B7 |X| > 2.
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u

v s

min
v�V

c(s, v, V ) + c(v, s)
<latexit sha1_base64="4+4bqo/sduT8irX6twmR0F36JMQ="></latexit><latexit sha1_base64="4+4bqo/sduT8irX6twmR0F36JMQ="></latexit><latexit sha1_base64="4+4bqo/sduT8irX6twmR0F36JMQ="></latexit><latexit sha1_base64="4+4bqo/sduT8irX6twmR0F36JMQ="></latexit>

pick node s arbitrarily



Dynamic programming and the TSP

https://xkcd.com/399

22-city TSP instance takes 1,000 years
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22! = 1,124,000,727,777,607,680,000  ~  1021

222 = 4,194,304

Concorde TSP solver

Concorde TSP solver.  [Applegate–Bixby–Chvátal–Cook] 

・Linear programming + branch-and-bound + polyhedral combinatorics. 

・Greedy heuristics, including Lin–Kernighan. 

・MST, Delaunay triangulations, fractional b-matchings, ... 

Remarkable fact.  Concorde has solved all 110 TSPLIB instances.
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largest instance has 85,900 cities!

Euclidean traveling salesperson problem

Euclidean TSP.  Given n points in the plane and a real number L, is there a 

tour that visit every city exactly once that has distance ≤ L ? 
 
Fact.  3-SAT ≤ P EUCLIDEAN-TSP. 

Remark.  Not known to be in NP.
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13509 cities in the USA and an optimal tour
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6 +
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8.928198407  <    8.928203230

Theoretical Computex Science 4 (1977) 237-244. 
@ North-Holland Publishing ‘Company 

Christos ITRIOU 
C’eenkr for Research in Computing TechatoCogy, Harvard University, Cambridge, MA 02138, 
U.S.A. 

Communicated by Richard Karp 
Received August 1975 
Revised My 1976 

Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if ;;s instances are 
restricted to be realizable by sets of points on the Euclidean plane. 

The Traveling Salesman Problem (TSP) can be stated as follows 
(n - l)n/2 integers denoting the distances bjetween all pairs of n cities, fin 
that is, a simple path visiting all cities, so that the total traversed distance is the leas 
possible. Recently there have been increasingly many reasons for one to believe 
that the TSP is extremely hard. There is evidence that there are no polyno 
algorithms for obtaining an exact solution (even if the distances are restrict 
0-l [5]) or a solution of some guaranteed accuracy [8]. oreoyer, the p 

iven solution is (exactly or approxi 

Euclidean metric) there is little known about the complexity o 

is almost alwayseasy in t 

using rounded weights



Euclidean traveling salesperson problem

Theorem.  [Arora 1998, Mitchell 1999]  Given n points in the plane, for any 

constant ε > 0: there exists a poly-time algorithm to find a tour whose length 

is at most (1 + ε) times that of the optimal tour. 

 
Pf recipe.  Structure theorem + divide-and-conquer + dynamic programming.
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Polynomial Time Approximation Schemes for
Euclidean Traveling Salesman and other Geometric
Problems

Sanjeev Arora

Princeton University

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA

Tel: (212) 555-1212; Fax: (212) 555-2000

We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For
every fixed c > 1 and given any n nodes in ℜ2 , a randomized version of the scheme finds a
(1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n)O(c)) time. When

the nodes are in ℜd, the running time increases to O(n(log n)(O(
√

dc))d−1
). For every fixed c, d the

running time is n · poly(log n), i.e., nearly linear in n. The algorithm can be derandomized, but
this increases the running time by a factor O(nd). The previous best approximation algorithm
for the problem (due to Christofides) achieves a 3/2-approximation in polynomial time.

We also give similar approximation schemes for some other NP-hard Euclidean problems: Mini-
mum Steiner Tree, k-TSP, and k-MST. (The running times of the algorithm for k-TSP and k-MST
involve an additional multiplicative factor k.) The previous best approximation algorithms for all
these problems achieved a constant-factor approximation. We also give efficient approximation
schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial
time.

All our algorithms also work, with almost no modification, when distance is measured using
any geometric norm (such as ℓp for p ≥ 1 or other Minkowski norms). They also have efficient
parallel (i.e., NC) implementations.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Geometrical problems and computations, Routing and layout; G.2.2 [Graph Theory]: Path
and circuit problems, Trees

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation Algorithms, Traveling Salesman Problem,
Steiner Problem, Network Design, Matching
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That's all, folks:  keep searching!

 35

Written by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms take-home final 

Woh-oh-oh-oh, find the longest path! 
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight, 
There would still be papers left to write. 
I have a weakness; 
I'm addicted to completeness, 
And I keep searching for the longest path.

The algorithm I would like to see 
Is of polynomial degree. 
But it's elusive: 
Nobody has found conclusive 
Evidence that we can find a longest path.

I have been hard working for so long. 
I swear it's right, and he marks it wrong. 
Somehow I’ll feel sorry when it's done:  GPA 2.1 
Is more than I hope for.

Garey, Johnson, Karp and other men (and women) 
Tried to make it order n log n. 
Am I a mad fool 
If I spend my life in grad school, 
Forever following the longest path?

for (int i = 0; i < 3; i++) 
     Woh-oh-oh-oh, find the longest path!


