Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?
INTRACTABILITY 1l

PEARSON
Addison
Wesley

A. Sacrifice one of three desired features.
4 specia/ cases: frees i. Solve arbitrary instances of the problem.

» approximation algorithms: vertex cover ii. Solve problem to optimality.
iii. Solve problem in polynomial time.

» exponential algorithms: TSP

Coping strategies.

i. Design algorithms for special cases of the problem. using greedy,
A A . q q .. dynamic programming,
! ii. Design approximation algorithms or heuristics. T A ———
JON KLEINBERG - EVA TARDOS

iii. Design algorithms that may take exponential time. petworbiriowalgori!

Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley

2
http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 5/2/18 2:37 PM

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of
nodes such that no two are adjacent.

INTRACTABILITY Il

» specia/ cases: frees Fact. A tree has at least one node that is a leaf (degree = 1).

Z

Key observation. If node v is a leaf, there exists

/ Igumhm Jesinn

JON KLEINBERG - EVA TARDOS

a max-cardinality independent set containing v.
Pf. [exchange argument]

* Consider a max-cardinality independent set S.
« If vE S, we're done.

SECTION 10.2

* Otherwise, let (u,v) denote the lone edge incident to v.
- ifugSand v S, then SU {v}is independent = S not maximum
- ifueSand v s, then SU {v}-{u} is independent =

Independent set on trees: greedy algorithm Intractability Ill: quiz 1 >

Theorem. The greedy algorithm finds a max-cardinality independent How might the greedy algorithm fail if the graph is not a tree/forest?
set in forests (and hence trees).

. . A. Might get stuck.
Pf. Correctness follows from the previous key observation. =
B. Might take exponential time.
INDEPENDENT-SET-IN-A-FOREST(F) C. Might produce a suboptimal independent set.
S O. D. Any of the above.
WHILE (F has at least 1 edge)
Let v be a leaf node and let (u, v) be the lone edge incident to v.
S<=SU{v}.
F<F — { u,v } <«— delete both « and v (including all incident edges)
RETURN S U { nodes remaining in F' }.
Remark. Can implement in O(n) time by maintaining nodes of degree 1.
5
Weighted independent set on trees Weighted independent set on trees
Weighted independent set on trees. Given a tree and node weights w, >0, Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes £, cw,. find an independent set S that maximizes =, cw,.
Greedy algorithm can fail spectacularly. Dynamic-programming solution. Root tree at some node, say r.

* OPT,,(u) = max-weight IS in subtree rooted at u, containing u.
« OPT,, (u) = max-weight IS in subtree rooted at u, not containing u.

« Goal: max { OPT,,(r), OPT,,(r) }.
C
Bellman equation.
) OPT,(u) = w,+ 3 OPT,(v)
v € children(u)
(@ «—— weight = huge OPT,, (1) = S max {OPT, (v), OPT,,, ()}
v € children(u)

©)

children(u) = { v, w, x }

Intractability Ill: quiz 2

In which order to solve the subproblems?

A. Preorder.

B. Postorder.

C. Level order.

D. Any of the above.

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set

in a treein O(n) time. \ can also find independent set itself
(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (T)

Root the tree T at any node r.

S .
FOREACH (node u of T in postorder/topological order)
IF (u is a leaf) N
ensures a node is processed
Min[u] = wy. after all of its descendants
Moulu] =0.
ELSE

Min[u] =wy + ZVE children(u) Mmu[V]-
Mnut[u] = ZVEChildren(u) max { Min[V], Mnut[V] }
RETURN max { Mu[r], Moulr] }.

Poly-time special cases of NP-hard problems

Trees. VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-ISOMORPHISM, ...
Bipartite graphs. VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-COLOR, ...
Planar graphs. MAX-CUT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...
Bounded treewidth. HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM, ...
Small integers. SUBSET-SUM, KNAPSACK, PARTITION, ...

//

Cf q/ \p / /
\\ /C} {i // ‘\

o O—&—0

tree bipartite planar bounded treewidth

Approximation algorithms

p-approximation algorithm.
INTRACTABILITY Il * Runs in polynomial time.

» Applies to arbitrary instances of the problem.

« Guaranteed to find a solution within ratio p of true optimum.

» approximation algorithms: vertex cover
Ex. Given a graph G, can find a vertex cover that uses < 2 OPT(G) vertices
in O(m + n) time.

Vi

Challenge. Need to prove a solution’s value is close to optimum value,

'\ ﬂNgumhm Jesinn

JON KLEINBERG - EVA TARDOS

without even knowing what optimum value is!

SECTION 11.8
The DESIGN of Kpproximation
APPROXIMATION Algorithms
ALGORITHMS o7
14
Vertex cover Vertex cover: greedy algorithm
VERTEX-COVER. Given a graph G =(V,E), find a min-size vertex cover. VERTEX-COVER. Given a graph G =(V, E), find a min-size vertex cover. D

for each edge (u,v) EE:
eitheru €S, v E S, or both

GREEDY-VERTEX-COVER(G)

S <.
E'< E.

, every vertex cover must take
WHILE (E # Q) at least one of these; we take both

Let (u, v) € E' be an arbitrary edge.

M<— MU {(u,v)}. <«— Misamatching

S < SU{u} U {v}.

Delete from E' all edges incident to either u or v.
RETURN §.

. vertex cover of size 4

Running time. Can be implemented in O(m + n) time.

Intractability Ill: quiz 3 l7\

Given a graph G, let M be any matching and let S be any vertex cover.
Which of the following must be true?

A, M| <|S]
B. |S| =< |M]|
C. Is| =|mM]|
D. None of the above.

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation for
VERTEX-COVER for any p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safral

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

Open research problem. Close the gap.
Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

Vertex cover: greedy algorithm is a 2-approximation algorithm

Theorem. Let §* be a minimum vertex cover. Then, greedy algorithm
computes a vertex cover S with | S| <2 |S*|. «<— 2-approximation algorithm
Pf.
* Sis avertex cover. «— delete edge only after it's already covered
* Mis a matching. <— when (u, v) added to M, all edges incident to either u or v are deleted
cUSI=2|M|<2]8*]. =

1 f

design weak duality

Corollary. Let M* be a maximum matching. Then, greedy algorithm
computes a matching M with |[M| = 1% |M*|.
Pf. IM|=%|S| = % |M*|. =

1

weak duality

INTRACTABILITY [l

» exponential algorithms: TSP

Pokemon Go Traveling salesperson problem

Given the locations of n Pokémon, find shortest tour to collect them all. TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length<D?

can view as a complete graph

Map: Where to catch
123 Pokémon in
San Francisco

BY ADAM BRINKLOW | OCT 4, 2016, 6:33AM PDT

13,509 cities in the United States

2 http:/ /www.math.uwaterloo.ca/tsp B

Traveling salesperson problem TSP books, apps, and movies

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length<D?

The Traveling
Salesman Problem
e v
-2 y

Carrior = 12:33 PM -

< Home Bounds

%

legate,
RobertE Bt byVa§ ek Chtal,
and Willam J. Co

Moats: 85882.6 (Gap 1.464%) é%i v I! l i i
DE POTESTATE IDEAM EST VIRTUTEM DEI

) %% ég%%é %%% Run Load O]

11,849 holes to drill in a programmed logic array
http:/ /www.math.uwaterloo.ca/tsp

23 24

Hamilton cycle reduces to traveling salesperson problem Intractability Ill: quiz 4 |)\

TSP. Given a set of n cities and a pairwise distance function d(u, v), What is complexity of TSP? Choose the best answer.
is there a tour of length<D?

. .) o)

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle that visits every node exactly once?

w >

O0*(1.657")
O*(zﬂ)

Theorem. HAMILTON-CYCLE <, TSP.
Pf. :

» Given an instance G = (V, E) of HAMILTON-CYCLE, create n = | V| cities) T
O* hides poly(n) terms

o N

O*(n!)

with distance function
1 if (u,v) € E

d(u,v) 2 if (wv) ¢ E

A

* TSP instance has tour of length < » iff G has a Hamilton cycle. =

25

Exponential algorithm for TSP: dynamic programming Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(»?2") time. Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(»? 2") time.

HAMILTON-CYCLE is a special case

Pf. [dynamic programming] pick node s arbitrarily

» Subproblems: c(s,v,X) = cost of cheapest path between s and v#s
that visits every node in X exactly once (and uses only nodes in X).
* Goal: mi‘r/l c(s,v, V) +c(v, s)
ve

A DYNAMIC PROGRAMMING APPROACH TO

Dynamic Programming Treatment of the
SEQUENCING PROBLEMS* Y 2! 'z . n .
ICHADS, HELDY sso MIGHARD M. KARPS Travelling Salesman Problem* There are <n 2" subproblems and they satisfy the recurrence:
INTRODUCTION RicHaRD BELLMAN
Many interesting and important optimization problems require the RAND Corporation, Santa Monica, California

determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
heduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of ree schemes
of the type associated with dynamie programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the ions to be performed. The dynamic
programming formulations are given in §1, together with
various extensions such as the inclusion of precedence constraints. In each

c(s,v) if | X| =2

min c(s,u, X \ {v}) + c(u,v) if | X|> 2.
Lo, u, X\ {0]) + cluv) i [X]

wn travelling salesman problem is the following: “A salesman is

once and only once each of n different cities starting from a base 0(37 v, X) =

ing to this city. What path minimizes the total distance travelled

ingenuity and li
whose experime:

icker and Zemlin (2],
ory did not produce

achieved in cases of
cities. The p of this note is

. hat this problem can o
mulated in dynamic programming terms [3], and resolved computa-

for up to 17 cities. For larger numbers, the method presented below, . A R .
each having the same structure as the original one. This procedure of suc- ined with various simple manipulatio e used to obtain quick The values c(s,v,X) can be com puted In Increasing

cessive approximations is developed in detail in h specific reference solutions. Results of this nature were independently obtained by

to the traveling-salesman problem, and §3 summarizes computational ex- : 1% M. Karp, who are i the processof pubiiding some extesions order of the cardinality of X. =

perience with an TBM 7090 program using the procedure.

all-integer program of C
though some s

case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,

27 28

Dynamic programming and the TSP

BRUTE -FORCE DYNAMIC .
SOL-UTIOEC: PROGRAMMING OELUNG ON EBAY:
0(n1) ALGORITHMS: o(1)
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW VR

https://xkcd.com/399

Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby—Chvatal-Cook]
+ Linear programming + branch-and-bound + polyhedral combinatorics.
» Greedy heuristics, including Lin-Kernighan.
* MST, Delaunay triangulations, fractional »-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

largest instance has 85,900 cities!

1242PM =

The Traveling
Salesman Problem

David L Applegate,
Robert E. Bixby, Vasek Chvtal,
and William J. Cook

31

22-city TSP instance takes 1,000 years

The Washington Post

222=4,194304
22! =1,124,000,727,777,607,680,000 ~ 10*!

30

Euclidean traveling salesperson problem

Euclidean TSP. Given n points in the plane and a real number L, is there a
tour that visit every city exactly once that has distance < L?

Fact. 3-SAT =< EUCLIDEAN-TSP.
Remark. Not known to be in NP.

VB+V6+ V18 < VA+VI2+ V12
8.928198407 < 8.928203230

THE EUCLIDEAN TRAVELING SALESMAN PROBLEM
IS NP-COMPLETE*

using rounded weights
Christos H. PAPADIMITRIOU
Center for Research in Computing Technology, Harvard University, Cambridge, MA 02138,
US.A.

Communicated by Richard Karp
Received August 1975
Revised July 1976

Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if iis instances are
restricted to be realizable by sets of poinis on the Euclidean plane.

13509 cities in the USA and an optimal tour

32

Euclidean traveling salesperson problem

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any
constant £ > 0: there exists a poly-time algorithm to find a tour whose length
is at most (1 +) times that of the optimal tour.

Pf recipe. Structure theorem + divide-and-conquer + dynamic programming.

Polynomial Time Approximation Schemes for GUILLOTINE SUBDIVISIONS APPROXIMATE POLYGONAL

Euclidean Traveling Salesman and other Geometric SUBDIVISIONS: A SIMPLE POLYNOMIAL-TIME
APPROXIMATION SCHEME FOR GEOMETRIC TSP, K-MST, AND

Problems RELATED PROBLEMS

Sanjeev Arora JOSEPH S. B. MITCHELL®

Princeton University

Abstract. We show that any polygonal subdivision in the plane can be converted into an “m-
guillotine” subdivision whose length is at most (14) times that of the original subdivision, for a

Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA small constant ¢. “m-Guillotine” subdivisions have le recursive structure that allows one to
Tel: (212) 555-1212; Fax: (212) 555-2000 search for shortest such subdi in polynomial ti ng dynamic programming. In particular,
n consequence o F our the imple polyn ime appraximation scheme for grometric

instances of several network optimization problems, including the Steiner minimum spanning tree,
the traveling salesperson problem (TSP), and the k-MST problem.

That's all, folks: keep searching!

Woh-oh-oh-oh, find the longest path! I have been hard working for so long.
Woh-oh-oh-oh, find the longest path! I swear it's right, and he marks it wrong.
Somehow I'll feel sorry when it's done: GPA 2.1

If you said P is NP tonight, Is more than I hope for.
There would still be papers left to write.
I have a weakness; Garey, Johnson, Karp and other men (and women)

I'm addicted to completeness, Tried to make it order n log n.
And I keep searching for the longest path. Am I a mad fool

If I spend my life in grad school,
The algorithm I would like to see Forever following the longest path?
Is of polynomial degree.
But it's elusive: for (inti=0;i<3;i++)
Nobody has found conclusive Woh-oh-oh-oh, find the longest path!
Evidence that we can find a longest path.

Written by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms take-home final

