INTRACTABILITY III

- greedy independent set algorithm demo
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node v.

- Let (u, v) denote the incident edge.
- Add both v to the independent set.
- Delete u and v (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node v.
 • Let (u, v) denote the incident edge.
 • Add both v to the independent set.
 • Delete u and v (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node \(v \).

- Let \((u, v)\) denote the incident edge.
- Add both \(v \) to the independent set.
- Delete \(u \) and \(v \) (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node v.

- Let (u, v) denote the incident edge.
- Add both v to the independent set.
- Delete u and v (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node v.
- Let (u, v) denote the incident edge.
- Add both v to the independent set.
- Delete u and v (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node \(v \).
- Let \((u, v)\) denote the incident edge.
- Add both \(v \) to the independent set.
- Delete \(u \) and \(v \) (and all incident edges).
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node \(v \).
- Let \((u, v)\) denote the incident edge.
- Add both \(v \) to the independent set.
- Delete \(u \) and \(v \) (and all incident edges).

Add isolated nodes to independent set.
Greedy independent set algorithm (for trees)

Repeatedly pick a leaf node \(v \).
- Let \((u, v)\) denote the incident edge.
- Add both \(v \) to the independent set.
- Delete \(u \) and \(v \) (and all incident edges).