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8.  INTRACTABILITY II

‣ P vs. NP 

‣ NP-complete 

‣ co-NP 

‣ NP-hard

3-SAT poly-time reduces to all of 
these problems (and many, many more)

Recap
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8.  INTRACTABILITY II

‣ P vs. NP 

‣ NP-complete 

‣ co-NP 

‣ NP-hard

SECTION 8.3

P

Decision problem. 

独Problem X is a set of strings. 

独Instance s is one string. 

独Algorithm A solves problem X : 
 
Def.  Algorithm A runs in polynomial time if for every string s, A(s)  
terminates in ≤ p( ⎢s ⎢) “steps,” where p(⋅) is some polynomial function.  

 
 
Def.  P = set of decision problems for which there exists a poly-time algorithm.

 4

length of s

      problem PRIMES: { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … } 

     instance s: 592335744548702854681
     algorithm: Agrawal–Kayal–Saxena (2002)

A(s) =

�
v2b B7 s � X

MQ B7 s /� X
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P.  Decision problems for which there exists a poly-time algorithm.

problem description
poly-time 
algorithm

yes no

MULTIPLE Is x a multiple of y ?
grade-school 

division
51, 17 51, 16

REL-PRIME Are x and y relatively prime ? Euclid’s algorithm 34, 39 34, 51

PRIMES Is x prime ?
Agrawal–Kayal–

Saxena 53 51

EDIT-DISTANCE
Is the edit distance between 

x and y less than 5 ?
Needleman–Wunsch

niether 
neither

acgggt 
ttttta

L-SOLVE
Is there a vector x that 

satisfies Ax = b ?
Gauss–Edmonds 

elimination

U-CONN
Is an undirected graph 

G connected? depth-first search

Some problems in P
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NP

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s : 
s ∈ X iff there exists a string t such that C(s, t) = yes. 
 
Def.  NP = set of decision problems for which there exists a poly-time certifier. 

独C(s, t) is a poly-time algorithm. 

独Certificate t is of polynomial size:  ⎢t ⎢ ≤  p(⎢s ⎢) for some polynomial p(⋅).
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“certificate” or “witness”

     problem COMPOSITES:    { 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, …. } 

    instance s:    437669
    certificate t:    541
     certifier C(s, t):    grade-school division

437,669 = 541 � 809

Certifiers and certificates:  satisfiability

SAT.  Given a CNF formula Φ, does it have a satisfying truth assignment? 

3-SAT.  SAT where each clause contains exactly 3 literals. 

 
Certificate.  An assignment of truth values to the Boolean variables. 

 
Certifier.  Check that each clause in Φ has at least one true literal. 

 
 
 
 
 
 
 
 
 
Conclusions.  SAT ∈ NP, 3-SAT ∈ NP.
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€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )instance s

certificate t x1 = true,  x2 = true,  x3 = false,  x4 = false

Certifiers and certificates:  Hamilton path

HAMILTON-PATH.  Given an undirected graph G = (V, E), does there exist a 

simple path P that visits every node? 

 
Certificate.  A permutation π of the n nodes. 

 
Certifier.  Check that π  contains each node in V exactly once,  
and that G contains an edge between each pair of adjacent nodes. 

 
 
 
 
 
 
 
 
Conclusion.  HAMILTON-PATH ∈ NP.

instance s certificate t
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NP.  Decision problems for which there exists a poly-time certifier.

problem description poly-time 
algorithm

yes no

L-SOLVE
Is there a vector x 

that satisfies Ax = b ?
Gauss–Edmonds 

elimination

COMPOSITES Is x composite ?
Agrawal–Kayal–

Saxena
51 53

FACTOR
Does x have a nontrivial factor 

less than y ?
(56159, 50) (55687, 50)

SAT
Given a CNF formula, does it have 

a satisfying truth assignment?

¬ x1 ∨ ¬ x2 ∨ ¬ x3 
¬ x1 ∨ ¬ x2 ∨ ¬ x3 
¬ x1 ∨ ¬ x2 ∨ ¬ x3

¬ x1 ∨ ¬ x2 
¬ x1 ∨ ¬ x2 
¬ x1 ∨ ¬ x2 

HAMILTON-
PATH

Is there a simple path between 
u and v that visits every node?

Some problems in NP
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Intractability:  quiz 1

Which of the following graph problems are known to be in NP?

A. Is the length of the longest simple path ≤ k ? 

B. Is the length of the longest simple path ≥ k ? 

C. Is the length of the longest simple path = k ? 

D. Find the length of the longest simple path. 

E. All of the above.
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Intractability:  quiz 2

In complexity theory, the abbreviation NP stands for…

A. Nope.  

B. No problem. 

C. Not polynomial time. 

D. Not polynomial space. 

E. Nondeterministic polynomial time.

 11

Significance of NP

NP.  Decision problems for which there exists a poly-time certifier.
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“ NP captures vast domains of computational, scientific, and mathematical  
   endeavors, and seems to roughly delimit what mathematicians and scientists  
   have been aspiring to compute feasibly. ”     —   Christos Papadimitriou

“ In an ideal world it would be renamed P vs VP. ”     —   Clyde Kruskal



P, NP, and EXP

P.     Decision problems for which there exists a poly-time algorithm. 

NP.   Decision problems for which there exists a poly-time certifier. 

EXP.  Decision problems for which there exists an exponential-time algorithm. 

 
Proposition.  P  ⊆  NP. 

Pf.  Consider any problem X ∈ P. 

独By definition, there exists a poly-time algorithm A(s) that solves X. 

独Certificate t = ε, certifier C(s, t) = A(s).   ▪ 
 
Proposition.  NP  ⊆  EXP. 

Pf.  Consider any problem X ∈ NP. 

独By definition, there exists a poly-time certifier C(s, t) for X, 
where certificate t satisfies ⎢t ⎢ ≤  p(⎢s ⎢) for some polynomial p(⋅). 

独To solve instance s, run C(s, t) on all strings t with ⎢t ⎢  ≤  p(⎢s ⎢). 

独Return yes iff C(s, t) returns yes for any of these potential certificates.  ▪ 
 
Fact.  P  ≠  EXP  ⇒  either P ≠ NP, or NP ≠ EXP, or both.
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The main question:  P vs. NP

Q.  How to solve an instance of 3-SAT with n variables? 

A.  Exhaustive search:  try all 2n truth assignments. 

 
Q.  Can we do anything substantially more clever? 

Conjecture.  No poly-time algorithm for 3-SAT.

 14

“intractable”

The main question:  P vs. NP

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel] 
Is the decision problem as easy as the certification problem? 

 
 
 
 
 
 
 
 
 
 
If yes…  Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR,  … 

If no…  No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, … 

 
Consensus opinion.   Probably no.

EXP NP

P

If  P ≠ NPIf  P = NP

EXP

P = NP
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Reductions:  quiz 3

Suppose P ≠ NP. Which of the following are still possible?

A. O(n3) algorithm for factoring n-bit integers. 

B. O(1.657n) time algorithm for HAMILTON-CYCLE. 

C. O(nlog log log n) algorithm for 3-SAT. 

D. All of the above.

 16



Intractability:  quiz 4

Does P = NP?

A. Yes. 

B. No. 

C. None of the above.

 17

Possible outcomes

P ≠ NP
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“ I conjecture that there is no good algorithm for the traveling salesman

   problem. My reasons are the same as for any mathematical conjecture:  

(i) It is a legitimate mathematical possibility and (ii) I do not know.”  

            —   Jack Edmonds 1966

“ In my view, there is no way to even make intelligent guesses about the

   answer to any of these questions. If I had to bet now, I would bet that

   P is not equal to NP. I estimate the half-life of this problem at 25–50

  more years, but I wouldn’t bet on it being solved before 2100. ”

            —   Bob Tarjan (2002)

Possible outcomes

P ≠ NP
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“ We seem to be missing even the most basic understanding of the

   nature of its difficulty…. All approaches tried so far probably (in  
   some cases, provably) have failed. In this sense P =NP is different

   from many other major mathematical problems on which a gradual

   progress was being constantly done (sometimes for centuries)

  whereupon they yielded, either completely or partially. ”

            —   Alexander Razborov (2002)

Possible outcomes

P = NP

 20

“  I think that in this respect I am on the loony fringe of the mathematical

    community: I think (not too strongly!) that P=NP and this will be

    proved within twenty years. Some years ago, Charles Read and I

    worked on it quite bit, and we even had a celebratory dinner in a

    good restaurant before we found an absolutely fatal mistake. ”  
      —   Béla Bollobás (2002)

“ In my opinion this shouldn’t really be a hard problem; it’s just

   that we came late to this theory, and haven’t yet developed any

   techniques for proving computations to be hard.  Eventually, it will

   just be a footnote in the books. ”      —   John Conway



Other possible outcomes

P = NP, but only Ω(n100) algorithm for 3-SAT. 

 
P ≠ NP, but with O(nlog*n) algorithm for 3-SAT. 

 
P = NP is independent (of ZFC axiomatic set theory).

 21

“ It will be solved by either 2048 or 4096. I am currently somewhat

   pessimistic. The outcome will be the truly worst case scenario:

   namely that someone will prove P = NP because there are only

   finitely many obstructions to the opposite hypothesis; hence there

   exists a polynomial time solution to SAT but we will never know  
   its complexity! ”      —   Donald Knuth

Millennium prize

Millennium prize.  $1 million for resolution of P ≠ NP problem. 
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Some writers for the Simpsons and Futurama. 

独J. Steward Burns.  M.S. in mathematics (Berkeley ’93). 

独David X. Cohen.  M.S. in computer science (Berkeley ’92). 

独Al Jean.  B.S. in mathematics. (Harvard ’81). 

独Ken Keeler.  Ph.D. in applied mathematics (Harvard ’90). 

独Jeff Westbrook.  Ph.D. in computer science (Princeton ’89).

NP-completeness and pop culture

Copyright © 1990, Matt Groening Copyright © 2000, Twentieth Century Fox
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Princeton CS Building, West Wall, Circa 2001
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Princeton CS Building, West Wall, Circa 2001
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8.  INTRACTABILITY II

‣ P vs. NP 

‣ NP-complete 

‣ co-NP 

‣ NP-hard

SECTION 8.4

Polynomial transformations

Def.  Problem X polynomial (Cook) reduces to problem Y if arbitrary 

instances of problem X can be solved using: 

独Polynomial number of standard computational steps, plus 

独Polynomial number of calls to oracle that solves problem Y. 

 
Def.  Problem X polynomial (Karp) transforms to problem Y if given any 

instance x of X, we can construct an instance y of Y such that x is a yes 
instance of X iff y is a yes instance of Y.  

 
 
Note.  Polynomial transformation is polynomial reduction with just one call 

to oracle for Y, exactly at the end of the algorithm for X. Almost all previous 

reductions were of this form.  

Open question.  Are these two concepts the same with respect to NP?

we require ⎢y⎢ to be of size polynomial in ⎢x⎢

we abuse notation ≤ P and blur distinction
 27

NP-complete

NP-complete.  A problem Y ∈ NP with the property that for every 
problem X ∈ NP, X ≤ P Y. 

 
Proposition.  Suppose Y ∈ NP-complete. Then, Y ∈ P iff P = NP. 

Pf.  ⇐  If P = NP, then Y ∈ P because Y ∈ NP. 

Pf.  ⇒  Suppose Y ∈ P. 

独Consider any problem X ∈ NP.  Since X ≤ P Y, we have X ∈ P. 

独This implies NP ⊆ P. 

独We already know P ⊆ NP. Thus P = NP.  ▪ 
 
 
 
 
Fundamental question.  Are there any “natural” NP-complete problems?

 28



The “first” NP-complete problem

Theorem. [Cook 1971, Levin 1973]  SAT ∈ NP-complete.
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The Complexity of Theorem-Proving Procedures 

Stephen A. Cook 

University of Toronto 

Summary 

It is shown that any recognition 
problem solved by a polynomial time- 
bounded nondeterministic Turing 
machine can be "reduced" to the pro- 
blem of determining whether a given 
propositional formula is a tautology. 
Here "reduced" means, roughly speak- 
ing, that the first problem can be 
solved deterministically in polyno- 
mial time provided an oracle is 
available for solving the second. 
From this notion of reducible, 
polynomial degrees of difficulty are 
defined, and it is shown that the 
problem of determining tautologyhood 
has the same polynomial degree as the 
problem of determining whether the 
first of two given graphs is iso- 
morphic to a subgraph of the second. 
Other examples are discussed. A 
method of measuring the complexity of 
proof procedures for the predicate 
calculus is introduced and discussed. 

Throughout this paper, a set of 
strings means a set of strings on 
some fixed, large, finite alphabet Z. 
This alphabet is large enough to in- 
clude symbols for all sets described 
here. All Turing machines are deter- 
ministic recognition devices, unless 
the contrary is explicitly stated. 

i. Tautologies and Polynomial Re- 
Reducibility. 

Let us fix a formalism for 
the propositional calculus in 
which formulas are written as 
strings on I. Since we will re- 
quire infinitely many proposition 
symbols (atoms), each such symbol 
will consist of a member of Z 
followed by a number in binary 
notation to distinguish that 
symbol. Thus a formula of length 
n can only have about n/logn 
distinct function and predicate 
symbols. The logical connectives 
are & (and), v (or), and ~(not). 

The set of tautologies 
(denoted by {tautologies}) is a 

certain recursive set of strings on 
this alphabet, and we are interested 
in the problem of finding a good 
lower bound on its possible recog- 
nition times. We provide no such 
lower bound here, but theorem 1 will 
give evidence that {tautologies} is 
a difficult set to recognize, since 
many apparently difficult problems 
can be reduced to determining tau- 
tologyhood. By reduced we mean, 
roughly speaking, that if tauto- 
logyhood could be decided instantly 
(by an "oracle") then these problems 
could be decided in polynomial time. 
In order to make this notion precise, 
we introduce query machines, which 
are like Turing machines with oracles 
in [I]. 

A query machine is a multitape 
Turing machine with a distinguished 
tape called the query tape, and 
three distinguished states called 
the query state, yes state, and n._o_ 
state, respectively. If M is a 
query machine and T is a set of 
strings, then a T-computation of M 
is a computation of M in which 
initially M is in the initial 
state and has an input string w on 
its input tape, and each time M 
assumes the query state there is a 
string u on the query tape, and 
the next state M assumes is the 
yes state if uET and the no state 
if u~T. We think of an "oracle", 
which knows T, placing M in the 
yes state or no state. 

Definition 

A set S of strings is P-redu- 
cible (P for polynomial) to a set 
T of strings iff there is some 
query machine M and a polynomial 
Q(n) such that for each input string 
w, the T-computation of M with in- 
put w halts within Q(Iwl) steps 
(lwl is the length of w~ and ends 
in an accepting state iff wcS. 

It is not hard to see that 
P-reducibility is a transitive re- 
lation. Thus the relation E on 

-151- 

Establishing NP-completeness

Remark.  Once we establish first “natural” NP-complete problem, 
others fall like dominoes. 

 
Recipe.  To prove that Y ∈ NP-complete: 

独Step 1.  Show that Y ∈ NP. 

独Step 2.  Choose an NP-complete problem X. 

独Step 3.  Prove that X ≤ P Y.  

 
 
Proposition.  If X ∈ NP-complete, Y ∈ NP, and X ≤ P Y, then Y ∈ NP-complete. 

Pf.  Consider any problem W ∈ NP.  Then, both W ≤ P X  and  X ≤ P Y. 

独By transitivity, W ≤ P Y.  

独Hence Y ∈ NP-complete.  ▪ by definition of 
NP-complete

 30

by assumption

Reductions:  quiz 4

Suppose that X ∈ NP-COMPLETE, Y ∈ NP, and X ≤ P Y. Which can you infer? 

A. Y is NP-complete. 

B. If Y ∉ P, then P ≠ NP. 

C. If P ≠ NP, then neither X nor Y is in P. 

D. All of the above.

 31

Y is NP-complete

recipe for proving that Y is NP-complete

X and Y are NP-complete

SAT poly-time reduces to all of 
these problems (and many, many more)

Implications of Karp
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Implications of Cook–Levin
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3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

INDEP
EN
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s 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SAT
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HAM-CYCLE

SUBSET-SUM
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SET-COVER

SAT

All of these problems (and many, many more) 
poly-time reduce to SAT.

Implications of Karp + Cook–Levin
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3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT and INDEPENDENT-SET 

poly-tim
e reduce to 

one another

3-COLOR

HAM-CYCLE

SUBSET-SUM

KNAPSACK

SET-COVER

SAT

All of these problems are NP-complete; they are 
manifestations of the same really hard problem.

 35

I’D TELL YOU ANOTHER 
NP-COMPLETE JOKE, 

BUT ONCE YOU’VE HEARD ONE, 

YOU’VE HEARD THEM ALL.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples. 

独Packing/covering problems:  SET-COVER, VERTEX-COVER,INDEPENDENT-SET. 

独Constraint satisfaction problems:  CIRCUIT-SAT, SAT, 3-SAT. 

独Sequencing problems:  HAMILTON-CYCLE, TSP. 

独Partitioning problems: 3D-MATCHING, 3-COLOR. 

独Numerical problems:  SUBSET-SUM, KNAPSACK. 

Practice.  Most NP problems are known to be in either P or NP-complete. 

 
NP-intermediate?  FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ….  

 
Theorem. [Ladner 1975]  Unless P = NP, there exist problems in NP that 
are in neither P nor NP-complete.

 36

On the Structure of Polynomial Time Reducibility 

RICHARD E. LADNER 

Umvers~ty of Wash~r~g~on, Seattle, Washington 

ABSTRACT Two notions of polynomml time reduclbihty, denoted here by ~ T e and <.~P, were de- 
fined by Cook and Karp, respectively The abstract  propertms of these two relatmns on the domain 
of computable sets are investigated. Both relations prove to be dense and to have minimal pairs. 
Further ,  there is a strictly ascending sequence with a minimal pair of upper bounds to the sequence. 
Our method of showing density ymlds the result that  if P ~ NP then there are members of NP -- P 
that  are not polynomml complete 

KEY WORDS AND PHRASES polynomial time computation, Turing reduc~billty, many-one reducibility 

CR CATEGORIES 5 25 

1. Introduction 

Cook [3] and Karp [6] have introduced two notions of polynomial time reducibility. They 
show quite effectively that the notion of reducibility is a useful tool in classifying the 
complexity of problems. They show that  a wide class of important problems all have the 
same time complexity (modulo a polynomial) by showing that all the problems are re- 
ducible to each other in polynomial time We propose to study the abstract properties of 
their two reducibilities thought of just as relations between problems. We pay particular 
attention to properties that  might shed some light on the question of whether or not every 
problem computable in nondeterministic polynomial time is also computable in determi- 
nistic polynomial time. We notice further that  the properties we show are true of poly- 
nomial time reducibility hold true also of a wide variety of subrecursive reducibilities, 
including log space, elementary, and primitive recursive. We fix the alphabet 2~ = {0, 1} 
as the alphabet in which all problems are encoded, so that  a problem is simply a subset 
of Z*. We let < be the natural  order on Z* ( k < 0 < l  < 0 0 < 0 1  < - • -), where ), represents 
the empty string. In  general we consider only solvable problems, that is, computable sub- 
sets of Z*. If x E Z* we let Ix I denote the length of x When confusion will not arise 
we adopt the habit of identifying a problem with its characteristic function, namely, if 
A C Z* then A ( x )  = 1 if x E A and A ( x )  = 0 if x ~ A. Our basic model of computa- 
tion is the multitape Turing machine. All such machines are assumed to be deterministic 
unless otherwise specified. A Turing machine T (determimstic or nondetermimstic) runs 
~n polynomial time if there is a polynomial function q such that  for every input  of length 
n any computation sequence of T halts in q(n) or fewer moves. Define P (NP) to be the 
class of problems recognized by deterministic (nondeterministic) Turmg machines which 
run in polynomial time. 

Copyright O 1975, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of thin material is granted provided that ACM's copyright notice is 
given and that reference is made to the pubhcatlon, to its date of msue, and to the fact that reprinting 
privileges were granted by permission of the Association for Computing Machinery 
Thin research was supported m part by the National Scmnce Foundatmn under Grant GJ-34745x. 
Many of the results presented here are found In a different form in "Polynomml time reduclbihty," 
Proe Fifth Annum ACM Symp on Theory of Computing, 1973, pp 122-129, and in "Subreeurslve 
reduclbdmes," Tech Rep #73-03-13, Department of Computer Scmnce, U. of Washington, Seattle, 
Wash. 
Author's address. Department of Computer Semnce, University of Washington, Seattle, WA 98195. 

Journal of the Association for Computing Machinery, Vol 22, No 1, January 1975, pp 155-171 



More hard computational problems

Garey and Johnson.  Computers and Intractability. 

独Appendix includes over 300 NP-complete problems. 

独Most cited reference in computer science literature.
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More hard computational problems

Aerospace engineering.  Optimal mesh partitioning for finite elements. 

Biology.  Phylogeny reconstruction. 

Chemical engineering.  Heat exchanger network synthesis. 

Chemistry.  Protein folding. 

Civil engineering.  Equilibrium of urban traffic flow. 

Economics.  Computation of arbitrage in financial markets with friction. 

Electrical engineering.  VLSI layout.  

Environmental engineering.  Optimal placement of contaminant sensors. 

Financial engineering.  Minimum risk portfolio of given return. 

Game theory.  Nash equilibrium that maximizes social welfare. 

Mathematics.  Given integer a1, …, an, compute 

Mechanical engineering.  Structure of turbulence in sheared flows. 

Medicine.  Reconstructing 3d shape from biplane angiocardiogram. 

Operations research.  Traveling salesperson problem. 

Physics.  Partition function of 3d Ising model. 

Politics.  Shapley–Shubik voting power. 

Recreation.  Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube. 

Statistics.  Optimal experimental design.
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Extent and impact of NP-completeness

Extent of NP-completeness.  [Papadimitriou 1995]  

独Prime intellectual export of CS to other disciplines. 

独6,000 citations per year (more than “compiler”, “OS”, “database”). 

独Broad applicability and classification power. 

 
NP-completeness can guide scientific inquiry. 

独1926:  Ising introduces simple model for phase transitions. 

独1944:  Onsager finds closed-form solution to 2D-ISING in tour de force. 

独19xx:  Feynman and other top minds seek solution to 3D-ISING. 

独2000:  Istrail proves 3D-ISING ∈ NP-complete. a holy grail of 
statistical mechanics

search for closed formula appears doomed
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You NP-complete me
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