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Algorithm design patterns and antipatterns Classify problems according to computational requirements
Algorithm design patterns. Q. Which problems will we be able to solve in practice?

» Greedy.

» Divide and conquer. A working definition. Those with poly-time algorithms.

* Dynamic programming.

* Duality.

« Reductions.
* Local search.

+ Randomization.

Godel Cobham Edmonds Rabin

von Neumann
(1953) (1956) (1964) (1965) (1966)
Algorlthm de5|gn antlpatterns' Turing machine, word RAM, uniform circuits, ...
* NP-completeness. O(n*) algorithm unlikely. V4
* PSPACE-completeness. O(n¥) certification algorithm unlikely. Theory. Definition is broad and robust.

+ Undecidability. No algorithm possible.

constants tend to be small, e.g., 3n2

Practice. Poly-time algorithms scale to huge problems.



Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring
linear programming integer linear programming

Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

» Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

—> Algorithm —
—

instance | ———> !
— forY

(of X)

—> solutionSto |

Algorithm for X

Classify problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.

input size = ¢ + log k

Provably requires exponential time. J/
» Given a constant-size program, does it halt in at most k steps?
» Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? N

using forced capture rule

At designed the perfoct comper

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

* Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Notation. X<, Y.

Note. We pay for time to write down instances of Y sent to oracle =
instances of Y must be of polynomial size.

Novice mistake. Confusing X =, Y with Y=<, X.



Intractability: quiz 1 l/ Intractability: quiz 2

Suppose that X <;, Y. Which of the following can we infer?

If X can be solved in polynomial time, then so can Y.
X can be solved in poly time iff Y can be solved in poly time.

If X cannot be solved in polynomial time, then neither can Y. Both A and B.

O N ® >
O N ® >

If Y cannot be solved in polynomial time, then neither can X. Neither A nor B.

Poly-time reductions

Design algorithms. If X<, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X<, Y and Y=<, X, we use notation X=,Y.
In this case, X can be solved in polynomial time iff ¥ can be.

N\ At D
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Bottom line. Reductions classify problems according to relative difficulty.

Which of the following poly-time reductions are known?

FIND-MAX-FLOW <, FIND-MIN-CUT.

FIND-MIN-CUT <, FIND-MAX-FLOW.
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Independent set

INDEPENDENT-SET. Given a graph G =(V, E) and an integer k, is there
a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size 267
Ex. Is there an independent set of size =77

. independent set of size 6

e 6 (O o o
O—@® @&—0O——70

Intractability: quiz 3 v

Consider the following graph G. Which are true?

The white vertices are a vertex cover of size 7.
The black vertices are an independent set of size 3.

Both A and B.

O 0w p

Neither A nor B.

® Q Q O ®

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a
subset of k (or fewer) vertices such that each edge is incident to
at least one vertex in the subset?

Ex. Is there a vertex cover of size <4?
Ex. Is there a vertex cover of size <3?

. independent set of size 6

O vertex cover of size 4

e 6 (O ©o
O—@® @&—0O——70

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

®
O

O

. independent set of size 6

O vertex cover of size 4




Vertex cover and independent set reduce to one another Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET =, VERTEX-COVER. Theorem. INDEPENDENT-SET =, VERTEX-COVER.
Pf. We show S is an independent set of size k iff V- S is a vertex cover Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k. of size n—k.
= ==

* Let S be any independent set of size k. * Let V- S be any vertex cover of size n—k.

* V-Sis of size n—k. * S is of size k.

* Consider an arbitrary edge (u,v) EE. » Consider an arbitrary edge (u,v) EE.

* Sindependent = eitheru &S, or vé&S, or both. « V-Sis avertex cover = eitherueV-S,orveV-S§, or both.

= eitherue V-5, orve V-5, or both. = either u &S, or v S, or both.
* Thus, V-S covers (u,v). = * Thus, S is an independent set. =
17

Set cover Intractability: quiz 4 D
SET-Cover. Given a set U of elements, a collection S of subsets of U, and an Given the universe U = { 1, 2, 3, 4, 5, 6, 7 } and the following sets,
integer k, are there <k of these subsets whose union is equal to U? which is the minimum size of a set cover?

..................................

| L U={1,2,3,4,5,6,7}

A.

» Set U of n capabilities that we would like our system to have. B. 2 S.={1,4,6} $={1.6,7}

* The i piece of software provides the set S, C U of capabilities. C. 3 P S.={1,2,3,6} S={1,3,5,7}
D.

Sample application.
* m available pieces of software.

* Goal: achieve all n capabilities using fewest pieces of software. S,={2,6,7} S;= {3,4,5}

None of the above.

{ U={1,2,3,4,5,6,7}
S,={3,7} S,={2,4}
G=3.45.6) si=(5)
ey

k=2

a set cover instance



Vertex cover reduces to set cover

Theorem. VERTEX-COVER < SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E) and k, we construct a

SET-COVER instance (U, S, k) that has a set cover of size k iff G has a
vertex cover of size k.

Construction.
* Universe U=E.
* Include one subset for each node vE V: S, ={¢ €EE: eincidenttov }.

@ ®

e 23 ey U={1,2,3,4,5,6,7}

e
’ g, =(3,7} S,={2,4}
@ % @ {05.={3,456} S,={5}
e % Pos,={1} S =1{1,2,6,7}
vertex cover instance set cover instance
k=2) (k =2)

21

Vertex cover reduces to set cover

Lemma. G=(V,E) contains a vertex cover of size kiff (U, S, k) contains
a set cover of size k.

Pf. = LetY C S be a set cover of size k in (U, S, k). “no” instances of VERTEX-COVER

. . . are solved correctly
* Then X = {v:S,€Y}is avertex cover of sizekinG. =

o e o U={1,2,3,4,5,6,7}
iS5, ={3,7} S,={2,4}
0 i 0 §(5,={3.4,5,6}) S,={5} ;
3 & Pos,={1} S, ={1,267}) i

vertex cover instance set cover instance
(k=2) (k =2)

23

Vertex cover reduces to set cover

Lemma. G=(V,E) contains a vertex cover of size kiff (U, S, k) contains
a set cover of size k.

Pf. = Let X C V be a vertex cover of size k in G. “yes” instances of VERTEX-COVER
. . are solved correctly
* ThenY={S,:vEX}is asetcoverof sizek. =

e 23 e ey U={1,2,3,4,5,6,7}
PoS.={3.7} Sp=12,4}

o . ® GG s

e €s PoS.={1} S ={1,2,67}) |

® @

vertex cover instance set cover instance
(k=2) (k =2)
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Satisfiability

Literal. A Boolean variable or its negation. X; or x;
Clause. A disjunction of literals. C, =x; v Xy VX3
Conjunctive normal form (CNF). A propositional ®=CrCA CinCy

formula ® that is a conjunction of clauses.

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

yes instance: x, = true, X, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

25

3-satisfiability reduces to independent set

Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k=|®| iff ® is satisfiable.

Construction.
* G contains 3 nodes for each clause, one for each literal.
» Connect 3 literals in a clause in a triangle.
» Connect literal to each of its negations.

X, X3 X X3 X, Xy

<1>=(xlvx2vx3)/\(xlvx2vx3) A(xlvxzva)
27

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to P = NP conjecture.

.= Donald J. Trump & |
@realDonaldTrump
Computer Scientists have so much funding and

time and can't even figure out the boolean
satisfiability problem. SAT!

1693 s0105 MIBE2PEE22

6:31 AM - 17 Apr 2017

26

3-satisfiability reduces to independent set

Lemma. @ is satisfiable iff G contains an independent set of size k=|®|.

Pf. = Consider any satisfying assignment for ®.

“yes” instances of 3-SAT

* Select one true literal from each clause/triangle. 170 STt ey

* This is an independent set of size k=|®|. =

Xy X3 X X3 X, Xy

<1>=(xlvx2vx3)/\(xlvx2vx3) A(xlvxzva)
28



3-satisfiability reduces to independent set Review

Lemma. @ is satisfiable iff G contains an independent set of size k=|®|. Basic reduction strategies.
« Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
Pf. <= Let S be independent set of size k.  Special case to general case: VERTEX-COVER <, SET-COVER.
* S must contain exactly one node in each triangle. e e + Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

» Set these literals to rrue (and remaining literals consistently).
* All clauses in @ are satisfied. =

Transitivity. If X<p,Yand Y=<, Z, then X<, Z.
Pf idea. Compose the two algorithms.

EX. 3-SAT <, INDEPENDENT-SET <, VERTEX-COVER =<, SET-COVER.

Xy X3 X X3 X, Xy

d>=(xlvx2vx3)/\(xlvx2vx3) A(xlvxzva)
29

DECISION, SEARCH, AND OPTIMIZATION PROBLEMS

8. INTRACTABILITY |

Decision problem. Does there exist a vertex cover of size < k?

Search problem. Find a vertex cover of size < k.
Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

» sequencing problems

\ Alyorithm Desig
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Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a
cycle T that visits every node exactly once?

yes
35

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph G = (V, E), does there exist
a directed cycle T that visits every node exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE < p, HAMILTON-CYCLE.

Pf. Given a directed graph G = (V, E), construct a graph G’ with 3n nodes.

E>’<. , o < °
>

directed graph G

undirected graph G’

Hamilton cycle

HAMILTON-CYCLE. Given an undirected graph G = (V, E), does there exist a

cycle T that visits every node exactly once?

® ® 6

@ © @ & ©
®

no

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G’ has a Hamilton cycle.

Pf. =
* Suppose G has a directed Hamilton cycle T.
* Then G' has an undirected Hamilton cycle (same order). =

Pf. <
* Suppose G’ has an undirected Hamilton cycle I''.
* T’ must visit nodes in G' using one of following two orders:
., black, white, blue, black, white, blue, black, white, blue, ...
., black, blue, white, black, blue, white, black, blue, white, ...

* Black nodes in I'" comprise either a directed Hamilton cycle T in G,

or reverse of one. =

36
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3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT <, DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance G of
DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff @ is satisfiable.

Construction overview. Let n denote the number of variables in ®.
We will construct a graph G that has 2" Hamilton cycles, with each cycle
corresponding to one of the 2" possible truth assignments.

39

Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

A. X, =true,x,=true,x;= true C. x,=false,x,= false,x;= true

B. D.

X, = true, X, = true, x; = false

x, = false, x, = false, x; = false

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
* Construct G to have 2" Hamilton cycles.

« Intuition: traverse path i from left to right < set variable x;= rrue.

40

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
» For each clause: add a node and 2 edges per literal.

node for clause j node for clause k

connect in this way
/ if x; appears in clause Ci

CTR KR AR AR AR C?

Xi = true

connect in this way
if x; appears in clause C; \

_—

<« xi = false

41 42



3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
+ For each clause: add a node and 2 edges per literal.

(Cl =x1V Tg v;y3) clause node 1 clause node 2 (CQ =T V T3 V Tg)

X3

3k + 3 =

3-satisfiability reduces to directed Hamilton cycle

Lemma. @ is satisfiable iff G has a Hamilton cycle.

Pf. =

* Suppose G has a Hamilton cycle T.

» If T enters clause node C;, it must depart on mate edge.
- nodes immediately before and after C;jare connected by an edge ec E
- removing C; from cycle, and replacing it with edge e yields Hamilton

cycle on G-{C; }

» Continuing in this way, we are left with a Hamilton cycle T" in
G -{C,Cy, ..., i}

« Set x;=rtrue if I'' traverses row i left-to-right; otherwise, set x; = false.

* traversed in “correct” direction, and each clause is satisfied. =

45

3-satisfiability reduces to directed Hamilton cycle

Lemma. @ is satisfiable iff G has a Hamilton cycle.

Pf. =
» Suppose 3-SAT instance @ has satisfying assignment x*.
* Then, define Hamilton cycle I' in G as follows:
- if xi=true, traverse row i from left to right
- if x; = false, traverse row i from right to left
- for each clause C;, there will be at least one row i in which we are
going in “correct” direction to splice clause node C;into cycle
(and we splice in C; exactly once) =

Poly-time reductions

constraint satisfaction

INDEPENDENT-SET DIR-HAM-CYCLE

VERTEX-COVER HAM-CYCLE

SET-COVER

packing and covering sequencing

44

46
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Subset sum

Subset sum

SUBSET-SUM. Given n natural numbers w,, ..., w, and an integer W, is there a Theorem. 3-SAT <, SUBSET-SUM.

subset that adds up to exactly w?
Pf. Given an instance ® of 3-SAT, we construct an instance of SUBSET-SUM

Ex. {215,215,275,275, 355,355, 420,420, 580, 580, 655,655 }, W =1505. that has solution iff @ is satisfiable.

Yes. 215+ 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary.
Poly-time reduction must be polynomial in binary encoding.

71



3-satisfiability reduces to subset sum 3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance ® with n variables and k clauses, Lemma. @ is satisfiable iff there exists a subset that sums to W.
form 2n + 2k decimal integers, each having n + k digits: Pf. = Suppose 3-SAT instance ® has satisfying assignment x*.
* Include one digit for each variable x; and one digit for each clause C;. « If x;=true, select integer in row x;;
Include two numbers for each variable x;. otherwise, select integer in row - x;.
* Include two numbers for each clause C;. * Each x; digit sums to 1.
* Sum of each x; digit is 1; » Since @ is satisfiable, each C; digit sums
¢ P w 1 0 0 0 1 0 100,010 | f q w 1 0 0 0 1 0 100,010
sum of each C; digit is 4. w7 o o [ o, o to at least 1 from x; and — x;rows.  EEEAEAEREEEE .
» 0 1 0 1 0 o0 10,100 + Select dummy integers to make » 0 1 0 1 0 0 10,100
Key property. No carries possible = -x» 0 1 0 o0 1 1 10,011 C; digits sumto 4. = -x» 0 1 0 o0 1 1 10,011
each digit yields one equation. x» 00 1 1 1 0 1,110 x» 0 0 1 1 1 0 1,110
4x; 0 0 1 0 0 1 1,001 4x; 0 0 1 0 0 1 1,001
0 0 0 1 0 0 100 0 0 0 1 0 0 100
""""""""""""""""""""""""""""""""" 0 0 0 2 0 0 200 0 0 0 2 0 0 200
Ci= =2x Vv x2 Vv A3 dummies to get clause 0 0 0 0 1 0 10 Ci= ~x Vv x2 Vv A3 dummies to get clause 0 0 0 0 1 0 10
_ XV omx V P columns to sum to 4 0 0 0 0 2 0 20 G = MY am Y P columns to sum to 4 0 0 0 0 2 0 20
: 0 0 0 0 0 1 1 : 0 0 0 0 0 1 1
= —x; V oxp Vool ) EC3= ax1 Vo ooxy Vooxs )
- wn-n---mw S wnnn---mw
SUBSET-SUM instance SUBSET-SUM instance

3-satisfiability reduces to subset sum SUBSET SUM REDUCES TO KNAPSACK

Lemma. @ is satisfiable iff there exists a subset that sums to W.

Pf. < Suppose there exists a subset §* that sums to W. SUBSET-SUM. Given n natural numbers w,, ..., w, and an integer W, is there a
* Digit x; forces subset S*to select either row x; or row -x; (but not both). subset that adds up to exactly W?
If row x; selected, assign x;=true ; otherwise, assign x; = false.
i i 2 & . . . . . .
Digit C; forces subset 5" to select KNAPSACK. Given a set of items X, weights u; =0, values v; =0, a weight limit
at least one literal in clause. = .
) 1 0 0 0 1 0 100,010 U, and a target value V, is there a subset S C X such that:
X1 y
- 1 0 0 1 0 1 100,101
» 0 1 0 1 0 0 10,100 Su <U Y w2V
% 0 1 0 o0 1 1 10,011 €S €5
x»x 0 0 1 1 1 0 1,110
4x; 0 0 1 0 0 1 1,001
o o o 1 o o 100 Recall. O U) dynamic programming algorithm for KNAPSACK.
'''''''''''''''''''''''''''''''''''''' 0 0 0 2 0 0 200
Ci= —-x1 V x2 Vv X3 .
. st gekn: ojojojo 1|0 10 Challenge. Prove SUBSET-SUM <p KNAPSACK.
C2 - X1 v -x2 v X3 columns to sum to 0 0 0 0 2 0 20 . . )
ool ol ol ol 1 Pf. Given instance (wi, ..., w,, W) of SUBSET-SUM, create KNAPSACK instance:
C3= =x1 vV mxa V x3

S e + ENEENENENEE -

SUBSET-SUM instance 76
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Karp’s 20 poly-time reductions from satisfiability

SATISFIABILITY\

0-1 INTEGER
CLIQUE PROGRAMMING
NODE . SET
COVER PACKING

FEEDBACK FEEDBACK DI®

SATISFIABILITY WITH AT
MOST 3 LITERALS PER CLAUSE

CHROMATIC NUMBER

EXACT
NODE SET ARC SET  HAMILTON _ > COVER
crrourT  COVERING
3_DI¥§ES§ONAL KNAPSACK
UNDIRECTED MATCHING SET
HAMILTON
CIRCULT
SEQUENCING PARTITION
MAX CUT

FIGURE 1 - Complete Problems

Dick Karp (1972)
1985 Turing Award

HITTING STEINER

TREE

CLIQUE
COVER

96
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