Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness. \(O(n^k)\) certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

- Turing machine, word RAM, uniform circuits, ...
- constants tend to be small, e.g., \(3 n^2\)

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most \(k\) steps?
- Given a board position in an \(n\)-by-\(n\) generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Poly-time reductions

Desiderata’. Suppose we could solve problem \(Y\) in polynomial time. What else could we solve in polynomial time?

Reduction. Problem \(X\) polynomial-time (Cook) reduces to problem \(Y\) if arbitrary instances of problem \(X\) can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y\).

Computational model supplemented by special piece of hardware that solves instances of \(Y\) in a single step

\[
\text{input size} = c + \log k
\]

Using forced capture rule

\[
\text{instance } I \\
(\text{of } X)
\]

Algorithm for \(X\)

Algorithm for \(Y\)

Solution \(S\) to \(I\)

\(X \leq_p Y\)

Notation. We pay for time to write down instances of \(Y\) sent to oracle \(\Rightarrow\) instances of \(Y\) must be of polynomial size.

Novice mistake. Confusing \(X \leq_p Y\) with \(Y \leq_p X\).
Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.

B. X can be solved in poly time iff Y can be solved in poly time.

C. If X cannot be solved in polynomial time, then neither can Y.

D. If Y cannot be solved in polynomial time, then neither can X.

Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Which of the following poly-time reductions are known?

A. $\text{FIND-MAX-FLOW} \leq_p \text{FIND-MIN-CUT}$.

B. $\text{FIND-MIN-CUT} \leq_p \text{FIND-MAX-FLOW}$.

C. Both A and B.

D. Neither A nor B.

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?

Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?

Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set} \equiv_{P} \textsc{Vertex-Cover}.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

Intractability: quiz 3

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem. INDEPENDENT-SET \cong_p VERTEX-COVER.

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[
\begin{align*}
\text{• Let } S \text{ be any independent set of size } k. \\
\text{• } V - S \text{ is of size } n - k. \\
\text{• Consider an arbitrary edge } (u, v) \in E. \\
\text{• } S \text{ independent } \Rightarrow \text{ either } u \notin S, \text{ or } v \notin S, \text{ or both.} \\
\quad \quad \Rightarrow \text{ either } u \in V - S, \text{ or } v \in V - S, \text{ or both.} \\
\text{• Thus, } V - S \text{ covers } (u, v). \quad \blacksquare
\end{align*}
\]

Set cover

SET-COVER. Given a set \(U \) of elements, a collection \(S \) of subsets of \(U \), and an integer \(k \), are there \(\leq k \) of these subsets whose union is equal to \(U \)?

Sample application.

\[
\begin{align*}
\text{• } m \text{ available pieces of software.} \\
\text{• Set } U \text{ of } n \text{ capabilities that we would like our system to have.} \\
\text{• The } i^\text{th} \text{ piece of software provides the set } S_i \subseteq U \text{ of capabilities.} \\
\text{• Goal: achieve all } n \text{ capabilities using fewest pieces of software.}
\end{align*}
\]

Intractability: quiz 4

Given the universe \(U = \{ 1, 2, 3, 4, 5, 6, 7 \} \) and the following sets, which is the minimum size of a set cover?

\[
\begin{align*}
\text{A.} & \quad 1 & \quad U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
\text{B.} & \quad 2 & \quad S_{a} = \{ 1, 4, 6 \} \quad S_{b} = \{ 1, 6, 7 \} \\
\text{C.} & \quad 3 & \quad S_{c} = \{ 2, 3, 6 \} \quad S_{d} = \{ 1, 3, 5, 7 \} \\
\text{D.} & \quad \text{None of the above.} & \quad S_{e} = \{ 2, 6, 7 \} \quad S_{f} = \{ 3, 4, 5 \}
\end{align*}
\]
Vertex cover reduces to set cover

Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER}. \)

Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E) \) and \(k \), we construct a \(\text{SET-COVER} \) instance \((U, S, k) \) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.
- Universe \(U = E \).
- Include one subset for each node \(v \in V \): \(S_v = \{ e \in E : e \text{ incident to } v \} \).

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} \\
S_b &= \{ 2, 4 \} \\
S_c &= \{ 3, 4, 5, 6 \} \\
S_d &= \{ 5 \} \\
S_e &= \{ 1 \} \\
S_f &= \{ 1, 2, 6, 7 \}
\end{align*}
\]

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).

Pf. Let \(Y \subseteq V \) be a vertex cover of size \(k \) in \(G \).
- Then \(Y = \{ S_v : v \in Y \} \) is a set cover of size \(k \).

8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

\[\Phi = C_1 \land C_2 \land C_3 \land C_4 \]

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).

Satisfiability is hard

Scientific Hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to \(P \neq NP \) conjecture.

3-satisfiability reduces to independent set

Theorem. \(3\text{-SAT} \leq_P \text{INDEPENDENT-SET} \).

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G,k)\) of INDEPENDENT-SET that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

Construction.
- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).
- Select one true literal from each clause/triangle.
- This is an independent set of size \(k = |\Phi| \). ■

Key application. Electrical design automation (EDA).
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).
- \(S \) must contain exactly one node in each triangle.
- Set these literals to true (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied. \(\blacksquare \)

"no" instances of 3-SAT are solved correctly

\[

g

k = 3

\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor x_2 \lor \overline{x_3} \right) \land \left(x_1 \lor \overline{x_2} \lor \overline{x_3} \right)
\]

Review

Basic reduction strategies.
- Simple equivalence: INDEPENDENT-SET \(\leq_p \) VERTEX-COVER.
- Special case to general case: VERTEX-COVER \(\leq_p \) SET-COVER.
- Encoding with gadgets: 3-SAT \(\leq_p \) INDEPENDENT-SET.

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. 3-SAT \(\leq_p \) INDEPENDENT-SET \(\leq_p \) VERTEX-COVER \(\leq_p \) SET-COVER.

Decision, Search, and Optimization Problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

Directed Hamilton cycle reduces to Hamilton cycle

Directed-Hamilton-Cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. **Directed-Hamilton-Cycle** \leq_p **Hamilton-Cycle**.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:
 - black, white, blue, black, white, blue, black, white, blue, ...
 - black, blue, white, black, blue, white, black, blue, white, ...
- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one.
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT \(\leq_p\) DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance \(\Phi\) of 3-SAT, we construct an instance \(G\) of DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff \(\Phi\) is satisfiable.

Construction overview. Let \(n\) denote the number of variables in \(\Phi\). We will construct a graph \(G\) that has \(2^n\) Hamilton cycles, with each cycle corresponding to one of the \(2^n\) possible truth assignments.

Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

- **A.** \(x_1 = true, x_2 = true, x_3 = true\)
- **B.** \(x_1 = true, x_2 = true, x_3 = false\)
- **C.** \(x_1 = false, x_2 = false, x_3 = true\)
- **D.** \(x_1 = false, x_2 = false, x_3 = false\)
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.
- For each clause: add a node and 2 edges per literal.

\[
\begin{align*}
C_1 &= x_1 \lor \overline{x_2} \lor x_3 \\
C_2 &= \overline{x_1} \lor x_2 \lor \overline{x_3}
\end{align*}
\]

\(\text{clause node 1} \quad \text{clause node 2} \)

3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)
- Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
- Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 - if \(x_i = \text{true} \), traverse row \(i \) from left to right
 - if \(x_i = \text{false} \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle (and we splice in \(C_j \) exactly once) \(\blacksquare \)

Poly-time reductions

- 3-Sat, poly-time reduces to Independent-Set
- 3-Sat, poly-time reduces to Set-Cover
- 3-Sat, poly-time reduces to Vertex-Cover
- 3-Sat, poly-time reduces to Hamilton-cycle
- 3-Sat, poly-time reduces to Directional-Hamilton-cycle
- 3-Sat, poly-time reduces to 3-Color
- 3-Sat, poly-time reduces to Subset-Sum

packing and covering sequencing partitioning numerical

constraint satisfaction

INDEPENDENT-SET

3-SAT

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

KNAPSACK

packing and covering sequencing partitioning numerical
8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

My hobby

My hobby: Embedding NP-complete problems in restaurant orders.

![Restaurant menu]

NP-Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution-NonCommercial 2.5

Subset sum

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. 3-SAT \leq_P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:
- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two variables for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

3-Sat instance

$$
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
$$

dummies to get clause columns to sum to 4

$\begin{bmatrix}
1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{bmatrix}$

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. Suppose there exists a subset S' that sums to W.
- Digit x_i forces subset S' to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i^* = true$; otherwise, assign $x_i^* = false$.

Digit C_j forces subset S' to select at least one literal in clause. \Box

3-Sat instance

$$
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
$$

dummies to get clause columns to sum to 4

$\begin{bmatrix}
1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{bmatrix}$

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Knapsack. Given a set of items X, weights $w_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V
$$

Recall. $O(nU)$ dynamic programming algorithm for Knapsack.

Challenge. Prove Subset Sum \leq_P Knapsack.

Pf. Given instance (w_1, \ldots, w_n, W) of Subset-Sum, create Knapsack instance:
Poly-time reductions

Karp’s 20 poly-time reductions from satisfiability

Dick Karp (1972)
1985 Turing Award

Numerical constraint satisfaction

packing and covering sequencing partitioning numerical