7. **Network Flow I**

- Ford–Fulkerson demo
- pathological example
7. **Network Flow I**

- *Ford–Fulkerson demo*
- *pathological example*
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f

fixes mistake from second augmenting path
Ford–Fulkerson algorithm demo

network G and flow f

residual network G_f
Ford–Fulkerson algorithm demo

network G and flow f

![Diagram of network G and flow f with min cut and residual network G_f.]

- Capacity $= 10 + 9 = 19$

residual network G_f

- Nodes reachable from s

value of max flow

9
7. **Network Flow I**

- Ford–Fulkerson demo
- pathological example
Ford–Fulkerson pathological example

Intuition. Let r satisfy $r^2 = 1 - r$.

- Initially, some residual capacities are 1 and r.
- After two augmenting paths, some residual capacities are r and r^2.
- After two more augmenting paths, some residual capacities are r^2 and r^3.
- After two more, some residual capacities are r^3 and r^4.
- By carefully choreographing the augmenting paths, infinitely many residual capacities arise!

\[
r = \frac{\sqrt{5} - 1}{2} \implies r^2 = 1 - r
\]

\[
r \approx 0.618 \implies r^4 < r^3 < r^2 < r < 1
\]
Ford–Fulkerson pathological example

flow network G

C sufficiently large that it won't ever be a bottleneck (we'll suppress)

$r^2 = 1 - r$
Ford–Fulkerson pathological example

augmenting path 1: $s \rightarrow w \rightarrow v \rightarrow t$ (bottleneck capacity = 1)

$r^2 = 1 - r$
Ford–Fulkerson pathological example

augmenting path 2: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)

$r^2 = 1 - r$
augmenting path 3: \(s \rightarrow w \rightarrow v \rightarrow u \rightarrow t \) (bottleneck capacity = \(r \))

\[r^2 = 1 - r \]
Ford–Fulkerson pathological example

augmenting path 4: \(s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t \) (bottleneck capacity = \(r^2 \))

\[
r^2 = 1 - r
\]
Ford–Fulkerson pathological example

augmenting path 5: \(s \to x \to w \to v \to t \) (bottleneck capacity = \(r^2 \))

\[
r^2 = 1 - r
\]
Ford–Fulkerson pathological example

augmenting path 6: \(s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t \) (bottleneck capacity = \(r^3 \))

\[
r^2 = 1 - r
\]
Ford–Fulkerson pathological example

augmenting path 7: $s \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^3)

$r^2 = 1 - r$
Ford–Fulkerson pathological example

augmenting path 8: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^4)

$r^2 = 1 - r$
Ford–Fulkerson pathological example

augmenting path 9: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow t$ (bottleneck capacity = r^4)

\[r^2 = 1 - r \]
Ford–Fulkerson pathological example

flow after augmenting path 1: \{ r - r^1, 1, 1 - r^0 \} \ (value of flow = 1)

flow after augmenting path 5: \{ r - r^3, 1, 1 - r^2 \} \ (value of flow = 1 + 2r + 2r^2)

flow after augmenting path 9: \{ r - r^5, 1, 1 - r^4 \} \ (value of flow = 1 + 2r + 2r^2 + 2r^3 + 2r^4)

\[r^2 = 1 - r \]
Ford–Fulkerson pathological example

Theorem. The Ford–Fulkerson algorithm may not terminate; moreover, it may converge to a value not equal to the value of the maximum flow.

Pf.

- After \((1 + 4k)\) augmenting paths of the form just described, the value of the flow

\[
1 + 2 \sum_{i=1}^{2k} r^i
\leq 1 + 2 \sum_{i=1}^{\infty} r^i
= 3 + 2r
< 5
\]

- Value of maximum flow = \(2C + 1\). □