6. DYNAMIC PROGRAMMING Il 6. DYNAMIC PROGRAMMING Il

» sequence alignment » sequence alignment

» Hirschberg's algorithm

» Bellman—Ford-Moore algorithm

7

/ lgorithm Design

JON KLEINBERG - EVA TARDOS

» distance-vector protocols

» negative cycles

\

JON KLEINBERG - EVA TARDOS

SECTION 6.6
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Last updated on 4/8/18 7:52 PM
String similarity Edit distance
Q. How similar are two strings? Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
+ Gap penalty §; mismatch penalty a,,.
Ex. ocurrance and occurrence. » Cost = sum of gap and mismatch penalties.

.urrance CT.GACACG
ocurrence CTGACACG

6 mismatches, 1 gap 1 mismatch, 1 gap cost = & + K + Oyp
assuming O, 4 = Qe = Ogg = Opp = 0
Applications. Bioinformatics, spell correction, machine translation,
°lc . I .n il Il speech recognition, information extraction, ...
(o] C u r r H. n C e
Spokesperson confirms senior government adviser was found

Oimizmatchest3lgaps Spokesperson said the senior adviser was found

BLOSUM matrix for proteins

ARNDCOQETGHT I LKMEFTPSTWYV
A7 3 33122033 3-12-4-120 54 -
R 39 1 3 6 1 -1 4 5 43 3 5 3 2 2 5 4 4
N 3 -1/9 2 50 -1 -11 64620 4641 07 45
D 3 3 2 107 1 2 3 2.7 7 26 6 3 -1 2.8 6 6
C 16 5.7 13 57 67 2 36 3 4.6 2 2 5 5 2
Q 21 0 -1 59 3 41 542 15 3-1-1 43 4
E 2 -1 -1 2/7 3 8 40 6 61 46 2 -1 2 6 5 4
G 0 4 1 3 -6 4 4 9 47 7 3 56 5 -1 36 6 6
H 3 0 1 2/72 1 0 412 6 5 -1 4 2 4 2 3 4 3 -5
I 3 -5 6F7 2 5 607 6 7 2 5 2 1 5 -4 2 5 3 4
L 3 4 6 7 3 4 6 7 -52 6 43 0 -5 43 4 2 1
K 13 0 20612 1 3 -1 -5 48 35 2 -1 -1/%6 4 4
M 2 3 4/%6 3 1 -4 -5 42 3 390431331
F 4 5 6 6 4 -5 %6 6 2 -1 0 -5 010 6 4 4 0 4 -2
P -1 3 4 3.6 3 2 5 4552 46122 3076 4
S 2 21 1 2111244134272 63 3
T 0 20 2 2 -1 2332 3-1-1432 8530
W -5 57085 4 6 6 4 -5 4 6 3 07 6 516 3 -5
Y 4 4 4 6 -5 3 -5 63 3 2 43 4 -6 3 -3 3 11 3
V 1 4 5 6 2 4 4 654 1 41 2430 537

Sequence alignment

Coal. Given two strings x, x, ... x,, and y, y, ...y, , find a min-cost alignment.

Def. An alignment M is a set of ordered pairs x; - y; such that each character
appears in at most one pair and no crossings.

xi—y;and xi —yy cross if i<i’, but j>j’
Def. The cost of an alignment M is:

cost(M) = ¥ a,, + S o+ Y o

(x;.y;)EM i:x; unmatched j:y; unmatched

mismatch gap

@]
—
>
@]

X5
‘M
- R

yroy2 ¥y3 Y4 ¥s Yo

an alignment of CTACCG and TACATG

M = { Xy, X3-Yp, X4Y3, X5—V4 X6 V6 }

Dynamic programming: quiz 1

What is edit distance between these two strings?

PALETTE PALATE

Assume gap penalty = 2 and mismatch penalty = 1.

m o N W »
ui A W N =

Sequence alignment: problem structure

Def. OPT(i,j) = min cost of aligning prefix strings x, x, ... x; and y, y, ... y;.
Goal. OPT(m, n).

Case 1. OPT(i,j) matches x; - y;.
Pay mismatch for x,—y;, + min cost of aligning x, x, ... x,; and y, y, ...y, ;.

Case 2a. OPT(,j) leaves x; unmatched.
Pay gap for x; + min cost of aligning x, x, ...x,, and y, y, ... y;.

\ optimal substructure property
(proof via exchange argument)

Case 2b. OPT(,j) leaves y; unmatched.
Pay gap for y; + min cost of aligning x, x, ... x; and y, y, ...y, ;.

Bellman equation. Jjo ifi=0
i6 ifj=0
OPT(i,j) = Qgpy, + OPT(i—1,j—1)
ming & + OPT(i—1,j) otherwise

§ + OPT(i,j —1)

Sequence alignment: bottom-up algorithm

SEQUENCE-ALIGNMENT(1, 1, X1, .., Xim, Y1y «+ Y, O, Q)

FOR i=0TOm
MI[i,0] < io.

For j=0TOR
MO0, j] < jo.

For i=1TO m
FOrR j=1TO n
M[i,j]<—min{axiyj+M[i—l,j—l],
6+M[i—1,j], already
6+M[i,j—1] } computed

RETURN M [m, n].

Sequence alignment: analysis

Theorem. The DP algorithm computes the edit distance (and an optimal
alignment) of two strings of lengths m and n in ®(mn) time and space.
Pf.

» Algorithm computes edit distance.

* Can trace back to extract optimal alignment itself. =

Theorem. [Backurs-Indyk 2015] If can compute edit distance of two strings
of length n in O(n?®) time for some constant ¢ > 0, then can solve SAT
with n variables and m clauses in poly(m) 20-9» time for some constant 6 > 0.

which would disprove SETH
Edit Distance Cannot Be Computed (strong exponential time hypothesis)
in Strongly Subquadratic Time

(unless SETH is false)*

Arturs Backurs' Piotr Indyk*
MIT MIT

Sequence alignment: traceback

S | M | L A R | T Y

0 2 4 6 8 10 12 14 16 18 20

1 2 4 1 3 2 4 6 8 7 9 11
D 4 6 3 3 4 4 6 8 9 9 11
E 6 8 5 5 6 6 6 8 10 11 11
N 8 10 7 7 8 8 8 8 10 12 13
T 10 12 9 9 9 10 10 10 10 9 11
1 12 14 8 10 8 10 12 12 9 11 11
T 14 16 10 10 10 10 12 14 11 8 11
Y 16 18 12 12 12 12 12 14 13 10 @

Dynamic programming: quiz 3

It is easy to modify the DP algorithm for edit distance to...

Compute edit distance in O(mn) time and O(m + n) space.
Compute an optimal alignment in O(mn) time and O(m + n) space.

Both A and B.

O n = >

Neither A nor B.

36 ifi =0
is ifj =0
OPT(i,j) = Qgpy, + OPT(i—1,j —1)

minq § + OPT(i —1,7) otherwise

5 + OPT(i,j — 1)

Sequence alignment in linear space

Theorem. [Hirschberg] There exists an algorithm to find an optimal

6. DYNAMIC PROGRAMMING Il alignment in O(mn) time and O(m + n) space.

» Clever combination of divide-and-conquer and dynamic programming.

* Inspired by idea of Savitch from complexity theory.

» Hirschberg's algorithm

Vi
. . Programming G. Manacher
Techniquc_s Editor
\ Algorithm Desigr Alinear Space
Algorithm for
JON KLEINBERG - EVA TARDOS Computing Maximal
Common Subsequences {
D.S. Hirschberg
SECTION 6.7 Princeton University

“The problem of finding a longest common subse-
quence of two strings has been solved in quadratic time
and space. An algorithm is presented which will solve
this problem in quadratic time and in linear space.

Key Words and Phrases: subsequence, longest
common subsequence, string correction, editing

CR Categories: 3.63, 3.73, 379, 422, 5.25

Hirschberg’s algorithm Hirschberg’s algorithm

Edit distance graph. Edit distance graph.
* Let f(i,j) denote length of shortest path from (0.,0) to (i,). * Let f(i,j) denote length of shortest path from (0,0) to (i,).
* Lemma: £(@,j) = OPT(G,j) for all i and ;. * Lemma: £(@,j) = OPT(G,j) for all i and ;.

Pf of Lemma. [by strong induction on i+]
* Base case: f(0,0)=OPT(0,0)=0.

@ N Y2 s Ya s Y * Inductive hypothesis: assume true for all (i’,j') with i’ +j’ < i+}j.
€ ®_> * Last edge on shortest path to (i,j) is from (i—-1, j-1), (i—1, j), or (i, j—1).
* Thus,
f(lvj) = min{awiyg‘ + f(l - 17j - 1)7 6+ f(Z - 17j)7 0+ f(7‘7.7 - 1)}
X, —
&, s = min{ag,y, + OPT(i— 1,5 — 1), § + OPT(i — 1,5), § + OPT(i,j — 1)}
inducti 3 a
X, -—6) P:cpcl:tchle\;eis = OPT(%]) U
Bellman
equation

x3 @

Hirschberg’s algorithm Hirschberg’s algorithm

Edit distance graph.

Edit distance graph.
* Let g(i,j) denote length of shortest path from @, j) to (m, n).

* Let f(i,j) denote length of shortest path from (0.,0) to (i,).
* Lemma: £(@,j) = OPT(G,j) for all i and ;.
» Can compute £(-,j) for any j in O(mn) time and O(m + n) space.

J

€ 1 Y2 Y3 s 3
‘- @— @
Xy —p x;

X2 X2

X3

Hirschberg’s algorithm Hirschberg’s algorithm

® : —®

Edit distance graph.
* Let g(i,j) denote length of shortest path from @, j) to (m, n).
» Can compute g(:, j) for any j in O(mn) time and O(m + n) space.

Edit distance graph.
* Let g(i,j) denote length of shortest path from @, j) to (m, n).
» Can compute g(i,j) by reversing the edge orientations and
inverting the roles of (0,0) and (m, n).

Ya Js

@ @

*1 X1

X2 X2

B ® x3

Hirschberg’s algorithm

Observation 1. The length of a shortest path that uses (i,)) is f(, j) + g(, j)-

X1 —_—

X2

X3 _)w

21

Hirschberg’s algorithm

Divide. Find index ¢ that minimizes f(q,n/2) + g(q,n/2); save node i—j as
part of solution.

Conquer. Recursively compute optimal alignment in each piece.

nl/2

23

Hirschberg’s algorithm

Observation 2. let g be an index that minimizes f(q,n/2) + g(q,n/2).

Then, there exists a shortest path from (0,0) to (m, n) that uses (g,n/2).

Ya Js 3

X1

X2

X3

Hirschberg’s algorithm: space analysis

Theorem. Hirschberg’s algorithm uses @(m +n) space.

Pf.

* Each recursive call uses ©(m) space to compute f(-,n/2) and g(-,n/2).

* Only ©(1) space needs to be maintained per recursive call.
* Number of recursive calls < n. =

24

22

Dynamic programming: quiz 4 e

What is the worst-case running time of Hirschberg’s algorithm?

A. O(mn)

B. O(mnlogm)

C. O(mnlogn)

D. O(mnlog mlog n)

Hirschberg’s algorithm: running time analysis

Theorem. Let T(m, n) = max running time of Hirschberg’s algorithm on
strings of lengths at most m and n. Then, T(m, n) = O(mn).

Pf. [by strong induction on m +n]
* O(mn) time to compute f(-, n/2) and g(-, n/2) and find index gq.
* T(q,n/2)+T(m—q,n/2) time for two recursive calls.

* Choose constant ¢ so that: 7T(m,2) < cm
T2,n) =< cn
Tm,n) < cmn+T(g,n/2)+Tm-q,nl/?2)

* Claim. T(m,n) < 2cmn.
* Base cases: m=2 and n=2.
* Inductive hypothesis: T(m,n) < 2cmn for all m',n’) with m’ +n’ < m +n.

A

Tm,n) < T(g,n/2)+T(m—-q,n/2)+cmn

A

< 2cqn/2 + 2c(m—-q)n/2 + cmn

inductive = cgn + cmn —cqgn + cmn
hypothesis

= 2cmn =
27

25

Hirschberg’s algorithm: running time analysis warmup

Theorem. Let T(m, n) = max running time of Hirschberg’s algorithm on
strings of lengths at most m and n. Then, T(m, n) = O(mn log n).

Pf.
* T(m,n) is monotone nondecreasing in both m and n.
* Tm,n) <= 2T(m,n/2) + O(m n)
= T(m,n) = O(mnlogn).

Remark. Analysis is not tight because two subproblems are of size
(g.n/2) and (m—-gq,n/2). Next, we prove T(m,n) = O(m n).

26

LONGEST COMMON SUBSEQUENCE

Problem. Given two strings x, x, ... x,, and y, y, ... y,,, find a common
subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some
character from y; a common subsequence if it results in the same string.

Ex. LCS(CCCACCACG, ACCGCGGATACG) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

28

6. DYNAMIC PROGRAMMING I

» Bellman—Ford-Moore algorithm

Algorthm Design

JON KLEINBERG - EVA TARDOS

SECTION 6.8

Shortest paths with negative weights: failed attempts

Dijkstra. May not produce shortest paths when edge lengths are negative.

Reweighting. Adding a constant to every edge length does not necessarily
make Dijkstra’s algorithm produce shortest paths.

(i) 14 ®
Adding 8 to each edge weight changes the

10 12 0 shortest path from s—v—w—7to s—t.

S

Dijkstra selects the vertices in the order s, 1, w, v
But shortest path from s to 7 is s—=v—w—1.

33

Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V, E), with arbitrary edge
lengths £, find shortest path from source node s to destination node z.

/

assume there exists a path
from every node to ¢

Q—

l

/Y

A
\

length of shortest path fromstot=9-3 -6 + 11 =11

Negative cycles

Def. A negative cycle is a directed cycle for which the sum of its edge

lengths is negative.

a negative cycle W : K(W) =

Z£e<0

ecW

32

34

Shortest paths and negative cycles

Lemma 1. If some v~t path contains a negative cycle, then there does not
exist a shortest v~¢ path.

Pf. If there exists such a cycle W, then can build a v~¢ path of arbitrarily
negative length by detouring around W as many times as desired. =

W) <0

35

Shortest-paths and negative-cycle problems

Single-destination shortest-paths problem. Given a digraph G = (V, E) with
edge lengths ¢, (but no negative cycles) and a distinguished node ¢,
find a shortest v~z path for every node v.

Negative-cycle problem. Given a digraph G =(V, E) with edge lengths ¢,,,

find a negative cycle (if one exists).
?_ | —>?\ ? T —)C\ T
-3 5 _T3 -3
(E«— 4 —(e— -4&)

4 2 \CD
shortest-paths tree negative cycle

37

Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a shortest v~t path
that is simple (and has = n-1 edges).

Pf.
* Among all shortest v~t paths, consider one that uses the fewest edges.

+ If that path P contains a directed cycle W, can remove the portion of P
corresponding to W without increasing its length. =

@ Q)

w

W) =0

36

Dynamic programming: quiz 5 s

Which subproblems to find shortest v~¢ paths for every node v?

A. OPT(i,v) = length of shortest v~t path that uses exactly i edges.
B. OPT(i,v) = length of shortest v~t path that uses at most edges.

C. Neither A nor B.

38

Shortest paths with negative weights: dynamic programming

Def. OPT(i,v) = length of shortest v~ path that uses < i edges.

Goal. OPT(n - 1’ V) for eaCh V. ~ by Lemma 2, if no negative cycles,

there exists a shortest v~7 path that is simple

Case 1. Shortest v~t path uses <i—1 edges.

* OPT(i,v) =OPT(i -1, v). \ optimal substructure property

/ (proof via exchange argument)

Case 2. Shortest v~t path uses exactly i edges.
* if (v,w) is first edge in shortest such v~ path, incur a cost of ¢
* Then, select best w~t path using <i— 1 edges.

vw*

Bellman equation.

0 ifi=0and v=t¢t

OPT(i,v) = { ifi=0andv#t

min { OPT(i—1,v), (mi)nE {OPT(i — 1,w) + lyy} } ifi >0
v, w)€E

39

Shortest paths with negative weights: implementation

Theorem 1. Given a digraph G = (V, E) with no negative cycles, the DP
algorithm computes the length of a shortest v~ path for every node v
in ®(mn) time and O(?) space.

Pf.
* Table requires ©(n?) space.
» Each iteration i takes ®(m) time since we examine each edge once. =

Finding the shortest paths.
* Approach 1: Maintain successor[i, v] that points to next node
on a shortest v~ path using <i edges.
* Approach 2: Compute optimal lengths M[i,v] and consider
only edges with M[i,v] = M[i—1,w] + £,,,. Any directed path in this
subgraph is a shortest path.

41

Shortest paths with negative weights: implementation

SHORTEST-PATHS(V, E, £, 1)

FOREACH node vE V :
M0, v] < oo,
MI[0,f] < 0.
ForRi=1TONR-1
FOREACH node vE V:
Mli,v] < M[i—1,v].
FOREACH edge (v, w) EE :

Mi,v]<-min{M[i,v], M[i-1,w]+¢£,, }.

40

Dynamic programming: quiz 6

It is easy to modify the DP algorithm for shortest paths to...

Compute lengths of shortest paths in O(mn) time and O(m + n) space.
Compute shortest paths in O(mn) time and O(m + n) space.

Both A and B.

O n = >

Neither A nor B.

42

Shortest paths with negative weights: practical improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).
* d[v] = length of a shortest v~ path that we have found so far.
* successor[v] = next node on a v~t path.

Performance optimization. If d[w] was not updated in iteration i -1,
then no reason to consider edges entering w in iteration i.

43

Dynamic programming: quiz 7

Which properties must hold after pass i of Bellman-Ford-Moore?

d[v] = length of a shortest v~ path using < i edges.
d[v] = length of a shortest v~¢ path using exactly i edges.

Both A and B.

O n = >

Neither A nor B.

45

Bellman-Ford-Moore: efficient implementation

BELLMAN-FORD-MOORE(V, E, ¢, t)

FOREACH node vE V':

d[v] < oo.

successor[v] <— null.
d[t] < 0.
ForRi=1TOR-1

FOREACH node w € V :

[F (d[w] was updated in previous pass)
FOREACH edge (v, w) EE :

pass i

IF (d[v] > dw] + ¢,,) O(m) time

W,

dlv] <dw]+ ¢,,.

successor[v] <= w.

IF (no d[-] value changed in pass i) STOP.

Bellman-Ford-Moore: analysis

Lemma 3. For each node v: d[v] is the length of some v~¢ path.
Lemma 4. For each node v: d[v] is monotone non-increasing.

Lemma 5. After pass i, d[v] < length of a shortest v~ path using <i edges.
Pf. [by induction on i]

* Base case: i=0.

* Assume true after pass i.

* Let P be any v~t path with < i + 1 edges.

* Let (v,w) be first edge in Pand let P’ be subpath from w to .

* By inductive hypothesis, at the end of pass i, dlw] < c(P’)

because P’ is a w~t path with < i edges.

+ After considering edge (v,w) in pass i+ 1: B

d[w] does not increase

d[v]

A

L, + d[w]

/ < ¢, +cP
and by Lemma 4, v ()
d[v] does not increase = E(P) O

44

46

Bellman-Ford-Moore: analysis

Theorem 2. Assuming no negative cycles, Bellman-Ford-Moore computes
the lengths of the shortest v~z paths in O(mn) time and ©(n) extra space.

Pf. Lemma 2 + Lemma 5. =

/ \

shortest path exists and after i passes,
has at most n—1 edges d[v] < length of shortest path
that uses < iedges

Remark. Bellman-Ford-Moore is typically faster in practice.

* Edge (v,w) considered in pass i + 1 only if d[w] updated in pass i.
* If shortest path has k edges, then algorithm finds it after < k passes.

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]

pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!

* Length of successor v~t path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2,

successor[2] =1 successor[1] =t

d[2] =20

(@)= 10 = 10

successor[3] =t
di3]=1

d(1]=10

1

1

dltf]=0

7@

47

49

Dynamic programming: quiz 8 (D

Assuming no negative cycles, which properties must hold throughout
Bellman-Ford-Moore?

A. Following successor[v] pointers gives a directed v~¢ path.

If following successor[v] pointers gives a directed v~t path,
then the length of that v~z path is d[v].

Both A and B.

Neither A nor B.

48

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!
* Length of successor v~t path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2, 3

successor[2] =1 successor[1] =3
d[2] =20 dl1]=2 dlr]1=0
! 1

successor[3] =t

di3]=1 “

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford-Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].

Counterexample. Claim is false!

 If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3,

d[2] =

jﬁiﬁ

d[4) = dl1]=5 51

Bellman-Ford-Moore: finding the shortest paths

Lemma 6. Any directed cycle Win the successor graph is a negative cycle.
Pf.
* |If successor[v] =w, we must have d[v] = d[w] + Luw-.
(LHS and RHS are equal when successor[v] is set; d[w] can only decrease;
d[v] decreases only when successor[v] is reset)
+ Let vi—w— ... = v — v be the sequence of nodes in a directed cycle W.
* Assume that (v, v1) is the last edge in W added to the successor graph.
* Just prior to that: d[v] > dv] + Lvi,v)
d[v2] = d[vi] + £(v2,v3)

d[vkq] = d[vk] TP E(kal,vk)

d[vk] > d[vl] + E(Vk Vl) holds with strict inequality
P D—

since we are updating d[v]

« Adding inequalities yields £(vi,v2) + £(v2,v3) + ... + 8(Vk-1, V) + L(vk, V1) < O. =

W is a negative cycle

53

Bellman-Ford-Moore: analysis

Claim. Throughout Bellman-Ford—Moore, following the successor[v]
pointers gives a directed path from v to ¢ of length d[v].
Counterexample. Claim is false!

 If negative cycle, successor graph may have directed cycles.

consider nodes in order: t, 1, 2, 3, 4

i
L.

d[2]=

9 dl]

étis

Bellman-Ford-Moore: finding the shortest paths

Theorem 3. Assuming no negative cycles, Bellman-Ford-Moore finds
shortest v~t paths for every node v in O(mn) time and ©(n) extra space.
Pf.

» The successor graph cannot have a directed cycle. [Lemma 6]

* Thus, following the successor pointers from v yields a directed path to t.

* Letv=vi—=w— ... > w =t be the nodes along this path P.

* Upon termination, if successor[v] = w, we must have d[v] = d[w] + L.

(LHS and RHS are equal when successor[v] is set; d[-] did not change)

* Thus, gw] = dv] + Ui, w)
since algorithm
d[v2] = d[vs] + £(v2,v3) terminated
dlvic1] = d[w] + 0(Vi-1, vi)

* Adding equations yields d[v] = d[t] + £(vi,v2) + £(v2,v3) + ... + 8(Vic1, vi). ®

/o

min length of any v~ path 0
(Theorem 2)

length of path P

54

Single-source shortest paths with negative weights

worst case discovered by

1955 on®) Shimbel

1956 O(m n*W) Ford

1958 O(m n) Bellman, Moore

1983 O(n>* mlog W) Gabow

1989 O(m n'? log(nW)) Gabow-Tarjan

1993 O(m n'?log W) Goldberg

2005 on**w) Sankowsi, Yuster-Zwick
2016 O(n'"" log W) Cohen-Madry-Sankowski-Vladu
20xx ?’,

single-source shortest paths with weights between -W and W

Distance-vector routing protocols

Communication network.
- Node = router.

- Edge = direct communication link.

non-negative, but

‘ Length of edge = latency of link. «— Bellman-Ford-Moore used anyway!

Dijkstra’s algorithm. Requires global information of network.

Bellman-Ford-Moore. Uses only local knowledge of neighboring nodes.

Synchronization. We don’t expect routers to run in lockstep. The order in
which each edges are processed in Bellman-Ford-Moore is not important.

Moreover, algorithm converges even if updates are asynchronous.

55

57

6. DYNAMIC PROGRAMMING I

» distance-vector protocols

\ Algnmhm Jesinn

JON KLEINBERG - EVA TARDOS

SECTION 6.9

Distance-vector routing protocols

Distance-vector routing protocols. [“routing by rumor”]
» Each router maintains a vector of shortest-path lengths to every other
node (distances) and the first hop on each path (directions).
» Algorithm: each router performs n separate computations, one for each
potential destination node.

Ex. RIP, Xerox XNS RIP, Novell’s IPX RIP, Cisco’s IGRP, DEC’s DNA Phase |V,
AppleTalk’s RTMP.

Caveat. Edge lengths may change during algorithm (or fail completely).
suppose this edge

1 gets deleted

ds)=2 dv) =1 d(6)=0

“counting to infinity” %

Path-vector routing protocols

not just the distance

Link-state routing protocols. o e

» Each router stores the whole network topology.

» Based on Dijkstra’s algorithm.

» Avoids “counting-to-infinity” problem and related difficulties.
» Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

59

Detecting negative cycles

Negative cycle detection problem. Given a digraph G = (V, E), with edge
lengths ¢,,, find a negative cycle (if one exists).

N
[P

61

6. DYNAMIC PROGRAMMING I

» negative cycles

7\|gmithm Jesinn

JON KLEINBERG - EVA TARDOS

SECTION 6.10

Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs
of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

0.741 * 1.366 * .995 = 1.00714497

N

1,366

62

Detecting negative cycles

Lemma 7. If OPT(n,v) = OPT(n - 1,v) for every node v, then no negative cycles.
Pf. The OPT(n,v) values have converged = shortest v~t path exists. =

Lemma 8. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest v~¢
path of length <n contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]
* Since OPT(n,v) < OPT(n-1,v), we know that shortest v~¢ path P has
exactly n edges.
* By pigeonhole principle, the path P must contain a repeated node x.
* Let W be any cycle in P.
* Deleting W yields a v~ path with < n edges = W s a negative cycle. =

@ @)

w

cW) <0 63

Detecting negative cycles

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.
Pf.

* Run Bellman-Ford-Moore on G’ for n’ = n+ 1 passes (instead of n' —1).

* If no d[v] values updated in pass »', then no negative cycles.

* Otherwise, suppose d[s] updated in pass »'.

* Define pass(v) = last pass in which d[v] was updated.

* Observe pass(s) =n' and pass(successor[v]) = pass(v) — 1 for each v.

» Following successor pointers, we must eventually repeat a node.

* Lemma 6 = the corresponding cycle is a negative cycle. =

Remark. See p. 304 for improved version and early termination rule.
(Tarjan’s subtree disassembly trick)

65

Detecting negative cycles

Theorem 4. Can find a negative cycle in ©(mn) time and ©(n2) space.
Pf.

Dynamic programming: quiz 9

.

Add new sink node ¢ and connect all nodes to r with 0-length edge.
G has a negative cycle iff G' has a negative cycle.

Case 1. [OPT(n,v) = OPT(n—1,v) for every node v]

By Lemma 7, no negative cycles.

Case 2. [OPT(n,v) < OPT(n—1,v) for some node v]

Using proof of Lemma 8, can extract negative cycle from v~¢ path.
(cycle cannot contain ¢ since no edge leaves ¢) =

A S

-3 -3 @

4
| .
N\ 0

64

How difficult to find a negative cycle in an undirected graph?

moonw >

O(m log n)
O(mn)

O(mn + n? log n)
O(n*)

No poly-time algorithm is known.

66

