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SECTION 6.6

String similarity

Q.  How similar are two strings? 

 
Ex.  ocurrance and occurrence.
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6 mismatches, 1 gap

o c u r r a n c e –

o c c u r r e n c e

1 mismatch, 1 gap

o c – u r r a n c e

o c c u r r e n c e

0 mismatches, 3 gaps

o c – u r r – a n c e

o c c u r r e – n c e

Edit distance

Edit distance.  [Levenshtein 1966, Needleman–Wunsch 1970] 

独Gap penalty δ; mismatch penalty αpq. 

独Cost = sum of gap and mismatch penalties. 

 
 
 
 
 
 
 
 
Applications.  Bioinformatics, spell correction, machine translation, 
speech recognition, information extraction, ...
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cost = δ + αCG + αTA

C T – G A C C T A C G

C T G G A C G A A C G

Spokesperson confirms     senior government adviser was found  
Spokesperson said     the senior            adviser was found

assuming αAA = αCC = αGG = αTT  = 0



BLOSUM matrix for proteins 
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What is edit distance between these two strings? 
 
 
Assume gap penalty = 2 and mismatch penalty = 1.  

A. 1

B. 2

C. 3

D. 4

E. 5

 6

Dynamic programming:  quiz 1

P A L E T T E

P A L A – T E

P A L E T T E       P A L A T E

1 mismatch, 1 gap

Goal.  Given two strings x1 x2 ... xm and y1 y2 ... yn , find a min-cost alignment. 

 
Def.  An alignment M is a set of ordered pairs xi – yj such that each character 

appears in at most one pair and no crossings. 

 
Def.  The cost of an alignment M is:

Sequence alignment

  

€ 

cost(M ) = α xi y j
(xi , y j ) ∈ M
∑

mismatch
! " # # $ # # 

+ δ
i : xi  unmatched

∑ + δ
j : y j  unmatched

∑

gap
! " # # # # # $ # # # # # 
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C T A C C – G

– T A C A T G

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

M = { x2–y1, x3–y2, x4–y3, x5–y4, x6–y6 }
an alignment of CTACCG and TACATG

xi – yj and xiʹ – yj′ cross if i < i ′, but j > j ʹ

Sequence alignment:  problem structure

Def.  OPT(i, j) = min cost of aligning prefix strings x1 x2 ... xi and y1 y2 ... yj. 

Goal.  OPT(m, n). 
 
Case 1.  OPT(i, j) matches xi – yj. 

Pay mismatch for xi – yj  + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj–1.  

 
Case 2a.  OPT(i, j) leaves xi unmatched. 

Pay gap for xi + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj.  

 
Case 2b.  OPT(i, j) leaves yj unmatched. 

Pay gap for yj + min cost of aligning x1 x2 ... xi and y1 y2 ... yj–1. 

 
Bellman equation.
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optimal substructure property 

(proof via exchange argument)

OPT (i, j) =

�
����������
����������

j� B7 i = 0

i� B7 j = 0

min

�
����
����

�xiyj + OPT (i � 1, j � 1)

� + OPT (i � 1, j)

� + OPT (i, j � 1)

Qi?2`rBb2
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Sequence alignment:  bottom-up algorithm
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SEQUENCE-ALIGNMENT(m, n, x1, …, xm, y1, …, yn, δ, α)                          


FOR  i = 0 TO m
M [i, 0] ← i δ.

FOR  j = 0 TO n
M [0, j] ← j δ. 

FOR  i = 1  TO  m
FOR  j = 1  TO  n

M [i, j] ← min { αxi yj + M [i – 1, j – 1],
                           δ + M [i – 1, j],
                           δ + M [i, j – 1] }.

 
RETURN M [m, n].


already 

computed

Sequence alignment:  traceback
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S I M I L A R I T Y

0 2 4 6 8 10 12 14 16 18 20

I 2 4 1 3 2 4 6 8 7 9 11

D 4 6 3 3 4 4 6 8 9 9 11

E 6 8 5 5 6 6 6 8 10 11 11

N 8 10 7 7 8 8 8 8 10 12 13

T 10 12 9 9 9 10 10 10 10 9 11

I 12 14 8 10 8 10 12 12 9 11 11

T 14 16 10 10 10 10 12 14 11 8 11

Y 16 18 12 12 12 12 12 14 13 10 7

Sequence alignment:  analysis

Theorem.  The DP algorithm computes the edit distance (and an optimal 

alignment) of two strings of lengths m and n in Θ(mn) time and space. 

Pf. 

独Algorithm computes edit distance. 

独Can trace back to extract optimal alignment itself.  ▪ 
 
 
 
Theorem.  [Backurs–Indyk 2015]  If can compute edit distance of two strings  
of length n in O(n2−ε) time for some constant ε > 0, then can solve SAT  
with n variables and m clauses in poly(m) 2(1−δ) n time for some constant δ > 0.
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which would disprove SETH 

(strong exponential time hypothesis)
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Edit Distance Cannot Be Computed

in Strongly Subquadratic Time

(unless SETH is false)∗

Arturs Backurs†

MIT
Piotr Indyk‡

MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n2−δ) for some constant δ > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MO(1)2(1−ϵ)N for a constant ϵ > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.

∗A preliminary version of this paper appeared in Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, 2015.

†backurs@mit.edu
‡indyk@mit.edu

It is easy to modify the DP algorithm for edit distance to…

A. Compute edit distance in O(mn) time and O(m + n) space.

B. Compute an optimal alignment in O(mn) time and O(m + n) space.

C. Both A and B.

D. Neither A nor B.
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Dynamic programming:  quiz 3

OPT (i, j) =

�
����������
����������

j� B7 i = 0

i� B7 j = 0

min

�
����
����

�xiyj + OPT (i � 1, j � 1)

� + OPT (i � 1, j)

� + OPT (i, j � 1)

Qi?2`rBb2
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SECTION 6.7

Sequence alignment in linear space

Theorem.  [Hirschberg]  There exists an algorithm to find an optimal 

alignment in O(mn) time and O(m + n) space. 

独Clever combination of divide-and-conquer and dynamic programming. 

独Inspired by idea of Savitch from complexity theory.

Programming G. Manacher  
Techniques Editor 

A Linear Space 
Algorithm for 
Computing Maximal 
Common Subsequences 
D.S .  H i r s c h b e r g  
P r i n c e t o n  U n i v e r s i t y  

The problem of finding a longest common subse- 
quence of  two strings has been solved in quadratic time 
and space. An algorithm is presented which will solve 
this problem in quadratic time and in linear space. 

Key Words and Phrases: subsequence, longest 
common subsequence, string correction, editing 

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25 

Introduction 

The problem of  finding a longest common subse- 
quence of two strings has been solved in quadratic time 
and space [1, 3]. For  strings of  length 1,000 (assuming 
coefficients of  1 microsecond and 1 byte) the solution 
would require 106 microseconds (one second) and 106 
bytes (1000K bytes). The former is easily accommo- 
dated, the latter is not so easily obtainable. I f  the 
strings were of length 10,000, the problem might not be 
solvable in main memory  for lack of space. 

We present an algorithm which will solve this prob- 
lem in quadratic time and in linear space. For  example, 
assuming coefficients of  2 microseconds and 10 bytes, 
for strings of  length 1,000 we would require 2 seconds 
and 10K bytes; for strings of  length 10,000 we would 
require a little over 3 minutes and 100K bytes. 

String C = c~c2 . . . cp  is a subsequence  of  string 
Copyright © 1975, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Research work was supported in part by NSF grant GJ-30126 
and National Science Foundation Graduate Felolwship. Author's 
address: Department of Electrical Engineering, Princeton Uni- 
versity, Princeton, NJ 08540. 

A = axa2 . . . am if and only if there is a mapping F: 
{1, 2, . . . ,  p} ~ {1, 2, . . . ,  m} such that f( i)  = k only 
if c~ is ak and F is a monotone  strictly increasing func- 
tion (i.e. F(i)  = u, F ( j )  = v, and i < j imply that  
u < v ) .  

String C is a c o m m o n  subsequence  of  strings A and B 
if and only if C is a subsequence of  A and C is a subse- 
quence of B. 

The problem can be stated as follows: Given strings 
A = aia.2.. "am and B = bxb2 . . . bn  (over alphabet Z), 
find a string C = ClC2. . .cp such that C, is a common 
subsequence of A and B and p is maximized. 

We call C an example of  a m a x i m a l  c o m m o n  subse-  
quence.  

Nota t ion .  For  string D = dld2. • • dr, Dk t is dkdk+l. • • d, 
i f k  < t ; d k d k _ x . . . d ,  i f k  >__ t. When k > t, we shall 
write ]3kt so as to make clear that we are referring to a 
"reverse substring" of  D. 

L(i ,  j )  is the maximum length possible of  any com- 
mon subsequence of Ax~ and B~s. 

x[ lY is the concatenation of strings x and y. 
We present the algorithm described in [3], which 

takes quadratic time and space. 

Algorithm A 

Algorithm A accepts as input strings A~m and Bx. 
and produces as output  the matrix L (where the ele- 
ment L(i ,  j )  corresponds to our notation of maximum 
length possible of  any common subsequence of Axl and 
B. ) .  

ALGA (m, n, A, B, L) 
1. Initialization: L(i, 0) ~ 0 [i=0...m]; 

L(O,j) +-- 0 [j=0...n]; 
2. for i +-- 1 to m do 

begin 
3. for j ~- 1 to n do 

if A (i) = B(j) then L(i, j )  ~- L(i--  1, j - -  1) "k 1 
else L(i , j )  ~-- max{L(i, j--1),  L(i-- I , j)} 

end 

Proof  of  Correctness of  Algorithm A 
To find L(i ,  j ) ,  let a common subsequence of that  

length be denoted by S(i ,  j )  = ClC2. . .cp.  I f  al = bj, 
we can do no better than by taking cp = a~ and looking 
for c l . . . c p _ l  as a common subsequence of  length 
L(i ,  j)  -- 1 of  strings AI,~-1 and B1.i-x. Thus, in this 
case, L ( i , j )  = L ( i -  1 , j -  1) -+- 1. 

I f  ai ~ bs, then cp is ai, b;, or neither (but not both). 
I f  cp is a~, then a solution C to problem (A~, B~j) [writ- 
ten P(i,  j)]  will be a solution to P(i ,  j - 1) since bj is 
not used. Similarly, if cp is bi, then we can get a solu- 
tion to P(i ,  j )  by solving P ( i  - -  1, j ) .  I f  c~ is neither, 
then a solution to either P( i  - -  1,j)  or P ( i , j  - -  1) will 
suffice. In determining the length of the solution, it is 
seen that L(i ,  j )  [corresponding to P(i,  j)]  will be the 
maximum o f L ( i - -  1 , j )  and L ( i , j - -  1). [] 

341 Communications June 1975 
of Volume 18 
the ACM Number 6 
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Edit distance graph. 

独Let f (i, j) denote length of shortest path from (0,0) to (i, j). 

独Lemma:  f (i, j) = OPT(i, j) for all i and j.

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε y4

m–n

0–0

Hirschberg′s algorithm

i–j

δ

δ

  

€ 

αxi y j
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0–0

Edit distance graph. 

独Let f (i, j) denote length of shortest path from (0,0) to (i, j). 

独Lemma:  f (i, j) = OPT(i, j) for all i and j. 

Pf of Lemma.  [ by strong induction on i + j ] 

独Base case:  f (0, 0) = OPT (0, 0) = 0. 

独Inductive hypothesis:  assume true for all (i ʹ, j ʹ) with  i ʹ + j ʹ  <  i + j. 

独Last edge on shortest path to (i, j) is from (i – 1,  j – 1), (i – 1,  j), or (i,  j – 1). 

独Thus,  

Hirschberg′s algorithm

i–j

δ

δ

  

€ 

αxi y j
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f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j) ▪inductive 

hypothesis

Bellman 

equation



Edit distance graph. 

独Let f (i, j) denote length of shortest path from (0,0) to (i, j). 

独Lemma:  f (i, j) = OPT(i, j) for all i and j. 

独Can compute f (·, j) for any j in O(mn) time and O(m + n) space.

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε

m–n

0–0

y4

Hirschberg’s algorithm
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0–0

j

i–j

Edit distance graph. 

独Let g(i, j) denote length of shortest path from (i, j) to (m, n).

Hirschberg’s algorithm
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x1

x2

y1

x3

y2 y3 y5 y6

ε

ε y4

m–n

0–00–0

i–j

m–n

i–j

Edit distance graph. 

独Let g(i, j) denote length of shortest path from (i, j) to (m, n). 

独Can compute g(i, j) by reversing the edge orientations and 
inverting the roles of (0, 0) and (m, n).

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε

m–n

0–0

y4

Hirschberg’s algorithm
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δ

δ
�xi+1yj+1

i–j

Edit distance graph. 

独Let g(i, j) denote length of shortest path from (i, j) to (m, n). 

独Can compute g(·,  j) for any j in O(mn) time and O(m + n) space.

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε y4

m–n

0–0

Hirschberg’s algorithm

m–n
 20

j

i–j



Observation 1.  The length of a shortest path that uses (i, j) is f (i,  j) + g(i,  j). 

Hirschberg’s algorithm

x1

x2

y1

x3

y2 y3 y5 y6

ε

ε y4

m–n

0–0

i–j

m–n

0–0

 21

Observation 2.  let q be an index that minimizes f(q, n / 2) + g (q, n / 2). 
Then, there exists a shortest path from (0, 0) to (m, n) that uses (q, n / 2).

x1

x2

y1

x3

y2 y5 y6

ε

ε y4

m–n

0–0

m–n

0–0

Hirschberg’s algorithm

n / 2

q
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y3

i–j

Divide.  Find index q that minimizes f (q, n / 2) + g (q, n / 2); save node i–j  as 

part of solution. 

 
Conquer.  Recursively compute optimal alignment in each piece.

x1

x2

x3

y2 y5 y6

ε

y4

m–n

0–0

Hirschberg’s algorithm
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n / 2

q

m–n

0–0

i–j

y3y1ε

Hirschberg’s algorithm:  space analysis

Theorem.  Hirschberg’s algorithm uses Θ(m + n) space. 

 
Pf.  

独Each recursive call uses Θ(m) space to compute f (·, n / 2) and g(·, n / 2). 

独Only Θ(1) space needs to be maintained per recursive call. 

独Number of recursive calls ≤  n.  ▪

 24



What is the worst-case running time of Hirschberg’s algorithm? 

A. O(mn)

B. O(mn log m)

C. O(mn log n)

D. O(mn log m log n)

 25

Dynamic programming:  quiz 4 Hirschberg’s algorithm:  running time analysis warmup

Theorem.  Let T(m, n) = max running time of Hirschberg’s algorithm on 

strings of lengths at most m and n. Then, T(m, n) = O(m n log n). 
 
Pf.  

独T(m, n) is monotone nondecreasing in both m and n. 

独T(m, n)  ≤   2 T(m, n / 2)  +  O(m n)
                      ⇒   T(m, n)  =  O(m n log n). 
 
 
 
Remark.  Analysis is not tight because two subproblems are of size 
(q, n / 2) and (m – q, n / 2).  Next, we prove T(m, n) = O(m n).
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Hirschberg′s algorithm:  running time analysis

Theorem.  Let T(m, n) = max running time of Hirschberg’s algorithm on 

strings of lengths at most m and n. Then, T(m, n) = O(m n). 
 
Pf.  [ by strong induction on m + n ] 

独O(m n) time to compute f ( ·,  n / 2) and g ( ·,  n / 2) and find index q. 

独T(q, n / 2) + T(m – q, n / 2) time for two recursive calls.  

独Choose constant c so that: 
 

独Claim.  T(m, n)   ≤   2 c m n. 

独Base cases:  m = 2 and n = 2.  

独Inductive hypothesis:  T(m, n)    ≤   2 c m n for all (mʹ, nʹ) with mʹ + nʹ  <  m + n.

 27

T(m, n) ≤ T(q, n / 2) + T(m – q, n / 2) + c m n

≤ 2 c q n / 2  +  2 c (m – q) n / 2  +  c m n

= c q n  +  c m n  –  c q n  +  c m n

= 2 c m n  ▪

T(m, 2) ≤ c m
T(2, n) ≤ c n
T(m, n) ≤ c m n + T(q, n / 2) + T(m – q, n / 2)

inductive 

hypothesis

LONGEST COMMON SUBSEQUENCE

Problem.  Given two strings x1 x2 ... xm and y1 y2 ... yn , find a common 

subsequence that is as long as possible. 

 
Alternative viewpoint.  Delete some characters from x ; delete some 

character from y ; a common subsequence if it results in the same string.  

Ex.  LCS(GGCACCACG, ACGGCGGATACG ) = GGCAACG. 

 
Applications.  Unix diff, git, bioinformatics.

 28
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SECTION 6.8

Shortest paths with negative weights

Shortest-path problem.  Given a digraph G = (V, E), with arbitrary edge 

lengths �vw, find shortest path from source node s to destination node t. 

 32

�1

8

5

7

5

4

�2

�5
12

10

13

9

length of shortest path from s to t = 9 − 3 − 6 + 11 = 11

s

4

5

t

9

�3

�6
11

assume there exists a path 

from every node to t

Shortest paths with negative weights:  failed attempts

Dijkstra.  May not produce shortest paths when edge lengths are negative. 

 
 
 
 
 
 
 
 
Reweighting.  Adding a constant to every edge length does not necessarily 

make Dijkstra’s algorithm produce shortest paths.

 33

t

v

2

6

�8

3

Dijkstra selects the vertices in the order s, t, w, v 

But shortest path from s to t is s→v→w→t.
4

s

w

s

t

v

10

14

w11

0

Adding 8 to each edge weight changes the 

shortest path from s→v→w→t to s→t.
12

Negative cycles

Def.  A negative cycle is a directed cycle for which the sum of its edge 

lengths is negative.

 34

�3

5

�3

�44

a negative cycle W :  �(W ) =
�

e�W

�e < 0
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Shortest paths and negative cycles

Lemma 1.  If some v↝t path contains a negative cycle, then there does not 

exist a shortest v↝t path. 

 
Pf.  If there exists such a cycle W, then can build a v↝t path of arbitrarily 

negative length by detouring around W as many times as desired.  ▪

 35

W

�(W)  <  0

v t

Shortest paths and negative cycles

Lemma 2.  If G has no negative cycles, then there exists a shortest v↝t path 

that is simple (and has ≤  n – 1 edges). 

 
Pf. 

独Among all shortest v↝t paths, consider one that uses the fewest edges. 

独If that path P contains a directed cycle W, can remove the portion of P 

corresponding to W without increasing its length.  ▪
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W

�(W)  ≥  0

v t

Shortest-paths and negative-cycle problems

Single-destination shortest-paths problem.  Given a digraph G = (V, E) with 

edge lengths �vw (but no negative cycles) and a distinguished node t, 
find a shortest v↝t path for every node v. 
 
Negative-cycle problem.  Given a digraph G = (V, E) with edge lengths �vw, 

find a negative cycle (if one exists).
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shortest-paths tree

52

Which subproblems to find shortest v↝t paths for every node v?  

A. OPT(i, v) = length of shortest v↝t path that uses exactly i edges.

B. OPT(i, v) = length of shortest v↝t path that uses at most edges.

C. Neither A nor B.
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Shortest paths with negative weights:  dynamic programming

Def.  OPT(i, v) = length of shortest v↝t path that uses ≤ i edges. 

 
Goal.  OPT(n – 1, v) for each v. 
 
Case 1.  Shortest v↝t path uses ≤ i – 1 edges. 

独OPT(i, v) = OPT(i – 1, v). 

Case 2.  Shortest v↝t path uses exactly i edges. 

独if (v, w) is first edge in shortest such v↝t path, incur a cost of �vw.

独Then, select best w↝t path using ≤ i – 1 edges. 

 
Bellman equation.
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optimal substructure property 

(proof via exchange argument)

OPT (i, v) =

�
����
����

0 B7 i = 0 �M/ v = t

� B7 i = 0 �M/ v �= t

min

�
OPT (i � 1, v), min

(v,w)�E
{OPT (i � 1, w) + �vw}

�
B7 i > 0
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by Lemma 2, if no negative cycles, 

there exists a shortest  v↝t path that is simple

Shortest paths with negative weights:  implementation
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SHORTEST-PATHS(V, E, �, t)                          
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

FOREACH node v ∈ V :

M [0, v] ← ∞.

M [0, t] ← 0.

FOR i = 1 TO n – 1

FOREACH node v ∈ V :

M [i, v] ← M [i – 1, v].

FOREACH edge (v, w) ∈ E :

M [i, v] ← min { M [i, v],  M [i – 1, w] + �vw }.


Shortest paths with negative weights:  implementation

Theorem 1.  Given a digraph G = (V, E) with no negative cycles, the DP 

algorithm computes the length of a shortest v↝t path for every node v 
in Θ(mn) time and Θ(n2) space. 

 
Pf. 

独Table requires Θ(n2) space. 

独Each iteration i takes Θ(m) time since we examine each edge once.  ▪ 
 
Finding the shortest paths. 

独Approach 1:  Maintain successor[i, v] that points to next node  
on a shortest v↝t path using ≤ i edges. 

独Approach 2:   Compute optimal lengths M[i, v] and consider  
only edges with M[i, v] = M[i – 1, w] + �vw. Any directed path in this 

subgraph is a shortest path.
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It is easy to modify the DP algorithm for shortest paths to…

A. Compute lengths of shortest paths in O(mn) time and O(m + n) space.

B. Compute shortest paths in O(mn) time and O(m + n) space.

C. Both A and B.

D. Neither A nor B.

 42

Dynamic programming:  quiz 6



Shortest paths with negative weights:  practical improvements

Space optimization.  Maintain two 1D arrays (instead of 2D array). 

独d[v] = length of a shortest v↝t path that we have found so far. 

独successor[v] = next node on a v↝t path. 

 
Performance optimization.  If d[w] was not updated in iteration i – 1, 
then no reason to consider edges entering w in iteration i.
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Bellman–Ford–Moore:  efficient implementation
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BELLMAN–FORD–MOORE(V, E, c, t)                          


FOREACH node v ∈ V :

d[v] ← ∞.

successor[v] ← null.

d[t] ← 0.

FOR i = 1 TO n – 1

FOREACH node w ∈ V :

IF (d[w] was updated in previous pass) 

FOREACH edge (v, w) ∈ E :

IF (d[v]  >  d[w] +  �vw)

d[v]  ← d[w] +  �vw.

successor[v] ← w.

IF (no d[⋅] value changed in pass i)  STOP.


pass i 
O(m) time

Which properties must hold after pass i of Bellman–Ford–Moore?  

A. d[v] = length of a shortest v↝t path using ≤ i edges.

B. d[v] = length of a shortest v↝t path using exactly i edges.

C. Both A and B.

D. Neither A nor B.
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Dynamic programming:  quiz 7

wv t2

d[t] = 0d[w] = 2

1

if node w considered before node v,
then d[v] = 3 after 1 pass

d[v] = 3

4

Bellman–Ford–Moore:  analysis

Lemma 3.  For each node v : d[v] is the length of some v↝t path. 

Lemma 4.  For each node v : d[v] is monotone non-increasing. 

Lemma 5.  After pass i, d[v] ≤ length of a shortest v↝t path using ≤ i edges. 

Pf.  [ by induction on i ] 

独Base case: i = 0. 

独Assume true after pass i. 

独Let P be any v↝t path with ≤  i + 1 edges. 

独Let (v, w) be first edge in P and let Pʹ be subpath from w to t. 

独By inductive hypothesis, at the end of pass i, d[w] ≤  c(P ʹ)  
because P ʹ is a w↝t path with ≤ i edges. 

独After considering edge (v, w) in pass i + 1:  
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d[v] ≤ �vw + d[w]

≤ �vw + c(P ʹ)

= �(P)   ▪
and by Lemma 4, 

d[v] does not increase

and by Lemma 4, 

d[w] does not increase



Bellman–Ford–Moore:  analysis

Theorem 2.  Assuming no negative cycles, Bellman–Ford–Moore computes 

the lengths of the shortest v↝t paths in O(mn) time and Θ(n) extra space. 

Pf.  Lemma 2 + Lemma 5.  ▪ 
 
 
 
 
 
Remark.  Bellman–Ford–Moore is typically faster in practice. 

独Edge (v, w) considered in pass i + 1 only if d[w] updated in pass i. 

独If shortest path has k edges, then algorithm finds it after ≤ k passes.
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shortest path exists and 

has at most n−1 edges

after i passes, 

 d[v] ≤ length of shortest path 

that uses ≤ i edges

Assuming no negative cycles, which properties must hold throughout 
Bellman–Ford–Moore?  

A. Following successor[v] pointers gives a directed v↝t path.

B. If following successor[v] pointers gives a directed v↝t path,  
then the length of that v↝t path is d[v].

C. Both A and B.

D. Neither A nor B.
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Dynamic programming:  quiz 8

Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v]. 

 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v].
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consider nodes in order: t, 1, 2, 3

Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v] 
pointers gives a directed path from v to t of length d[v]. 
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v].
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Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v]  
pointers gives a directed path from v to t of length d[v]. 
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v]. 

独If negative cycle, successor graph may have directed cycles.
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Bellman–Ford–Moore:  analysis

Claim.  Throughout Bellman–Ford–Moore, following the successor[v] 
pointers gives a directed path from v to t of length d[v]. 
 
 
Counterexample.  Claim is false! 

独Length of successor v↝t path may be strictly shorter than d[v]. 

独If negative cycle, successor graph may have directed cycles.
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Bellman–Ford–Moore:  finding the shortest paths

Lemma 6.  Any directed cycle W in the successor graph is a negative cycle. 

Pf. 

独If successor[v] = w, we must have d[v]  ≥  d[w] + �vw. 
(LHS and RHS are equal when successor[v] is set; d[w] can only decrease; 

d[v] decreases only when successor[v] is reset)  

独Let v1 → v2 → … → vk → v1 be the sequence of nodes in a directed cycle W. 

独Assume that (vk, v1) is the last edge in W added to the successor graph. 

独Just prior to that: 
 
 
 
 

独Adding inequalities yields �(v1, v2) + �(v2, v3)  + … + �(vk–1, vk) + �(vk, v1)  <  0. ▪ 
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d[v1] ≥ d[v2] +  �(v1, v2)

d[v2] ≥ d[v3] +  �(v2, v3)
 ⋮   ⋮ ⋮

d[vk–1] ≥ d[vk] +  �(vk–1, vk)

d[vk] > d[v1] +  �(vk, v1)

W is a negative cycle

holds with strict inequality 

since we are updating d[vk]

Bellman–Ford–Moore:  finding the shortest paths

Theorem 3.  Assuming no negative cycles, Bellman–Ford–Moore finds 
shortest v↝t paths for every node v in O(mn) time and Θ(n) extra space. 

Pf. 

独The successor graph cannot have a directed cycle.  [Lemma 6] 

独Thus, following the successor pointers from v yields a directed path to t. 

独Let v = v1 → v2 → … → vk = t  be the nodes along this path P. 

独Upon termination, if successor[v] = w, we must have d[v]  =  d[w] + �vw.  
(LHS and RHS are equal when successor[v] is set; d[·] did not change) 

独Thus, 
 
 
 

独Adding equations yields d[v] = d[t] + �(v1, v2) + �(v2, v3)  + … + �(vk–1, vk).  ▪ 
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d[v1] = d[v2] +  �(v1, v2)

d[v2] = d[v3] +  �(v2, v3)
 ⋮   ⋮ ⋮

d[vk–1] = d[vk] +  �(vk–1, vk)

length of path P
min length of any v↝t path 

(Theorem 2)

0

since algorithm 

terminated



year worst case discovered by

1955 O(n4) Shimbel

1956 O(m n2 W) Ford

1958 O(m n) Bellman, Moore

1983 O(n3/4 m log W) Gabow

1989 O(m n1/2 log(nW)) Gabow–Tarjan

1993 O(m n1/2 log W) Goldberg

2005 O(n2.38 W) Sankowsi, Yuster–Zwick

2016 Õ(n10/7 log W) Cohen–Mądry–Sankowski–Vladu

20xx

Single-source shortest paths with negative weights
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single-source shortest paths with weights between –W and W

6. DYNAMIC PROGRAMMING II

‣ sequence alignment 

‣ Hirschberg′s algorithm  

‣ Bellman–Ford–Moore algorithm 

‣ distance-vector protocols  

‣ negative cycles

SECTION 6.9

Distance-vector routing protocols

Communication network. 

独Node ≈ router. 

独Edge ≈ direct communication link. 

独Length of edge ≈ latency of link. 

 
Dijkstra’s algorithm.  Requires global information of network. 

 
Bellman–Ford–Moore.  Uses only local knowledge of neighboring nodes. 

 
Synchronization.  We don’t expect routers to run in lockstep. The order in 

which each edges are processed in Bellman–Ford–Moore is not important. 

Moreover, algorithm converges even if updates are asynchronous.
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non-negative, but 

Bellman–Ford–Moore used anyway!

Distance-vector routing protocols

Distance-vector routing protocols. [ “routing by rumor” ] 

独Each router maintains a vector of shortest-path lengths to every other 

node (distances) and the first hop on each path (directions). 

独Algorithm:  each router performs n separate computations, one for each 

potential destination node. 

 
Ex.  RIP, Xerox XNS RIP, Novell’s IPX RIP,  Cisco’s IGRP, DEC’s DNA Phase IV, 

AppleTalk’s RTMP. 

 
 
Caveat.  Edge lengths may change during algorithm (or fail completely).
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“counting to infinity”

vs t1

1

1

d(s) = 2 d(v) = 1

suppose this edge 

gets deleted

d(t) = 0



Path-vector routing protocols

Link-state routing protocols. 

独Each router stores the whole network topology. 

独Based on Dijkstra’s algorithm. 

独Avoids “counting-to-infinity” problem and related difficulties. 

独Requires significantly more storage. 

 
 
Ex.  Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
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not just the distance 

and first hop

6. DYNAMIC PROGRAMMING II

‣ sequence alignment 

‣ Hirschberg′s algorithm  

‣ Bellman–Ford–Moore algorithm 

‣ distance vector protocol  

‣ negative cycles

SECTION 6.10

Detecting negative cycles

Negative cycle detection problem. Given a digraph G = (V, E), with edge 

lengths �vw, find a negative cycle (if one exists).
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6

Detecting negative cycles:  application

Currency conversion.  Given n currencies and exchange rates between pairs 

of currencies, is there an arbitrage opportunity? 

 
Remark.  Fastest algorithm very valuable!
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An arbitrage opportunity
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Detecting negative cycles

Lemma 7.  If OPT(n, v) = OPT(n – 1, v) for every node v, then no negative cycles. 

Pf.  The OPT(n, v) values have converged ⇒ shortest v↝t path exists.  ▪ 
 
Lemma 8.  If OPT(n, v)  <  OPT(n – 1, v) for some node v, then (any) shortest v↝t 
path of length ≤ n contains a cycle W.  Moreover W is a negative cycle. 

 
Pf.  [by contradiction] 

独Since OPT(n, v)  <  OPT(n – 1, v), we know that shortest v↝t path P has 

exactly n edges. 

独By pigeonhole principle, the path P must contain a repeated node x. 

独Let W be any cycle in P. 

独Deleting W yields a v↝t path with <  n edges  ⇒  W is a negative cycle.  ▪
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W

c(W) < 0

v t
x

Detecting negative cycles

Theorem 4.  Can find a negative cycle in Θ(mn) time and Θ(n2) space. 

Pf. 

独Add new sink node t and connect all nodes to t with 0-length edge. 

独G has a negative cycle iff G ʹ has a negative cycle. 

独Case 1. [ OPT(n, v) = OPT(n – 1, v) for every node v ] 
By Lemma 7, no negative cycles. 

独Case 2. [ OPT(n, v) < OPT(n – 1, v) for some node v ] 
Using proof of Lemma 8, can extract negative cycle from v↝t path. 
(cycle cannot contain t since no edge leaves t)  ▪
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Detecting negative cycles

Theorem 5.  Can find a negative cycle in O(mn) time and O(n) extra space. 

Pf. 

独Run Bellman–Ford–Moore on G ʹ for nʹ = n + 1 passes (instead of nʹ – 1). 

独If no d[v] values updated in pass nʹ, then no negative cycles. 

独Otherwise, suppose d[s] updated in pass nʹ. 

独Define pass(v) = last pass in which d[v] was updated.  

独Observe pass(s) = nʹ  and pass(successor[v]) ≥ pass(v) – 1 for each v.

独Following successor pointers, we must eventually repeat a node. 

独Lemma 6  ⇒  the corresponding cycle is a negative cycle.    ▪ 
 
Remark.  See p. 304 for improved version and early termination rule.  
(Tarjan’s subtree disassembly trick) 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How difficult to find a negative cycle in an undirected graph?  

A. O(m log n)

B. O(mn)

C. O(mn + n2 log n)

D. O(n2.38)

E. No poly-time algorithm is known.
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Dynamic programming:  quiz 9

Chapter 46 

Data Structures for Weighted Matching and 
Nearest Common Ancestors with Linking 

Harold N. Gabow* 

Abstract. This paper shows that the weighted match- 
ing problem on general graphs can be solved in time 
O(n(m + n log n)), f or n and m the number of vertices 
and edges, respectively. This was previously known 
only for bipartite graphs. It also shows that a sequence 
of m nca and link operations on n nodes can be pro- 
cessed on-line in time O(ma(m, n)+n). This was previ- 
ously known only for a restricted type of link operation. 

1. Introduction. 
This paper solves two well-known problems in data 

structures and gives some related results. The starting 
point is the matching problem for graphs, which leads to 
the other problems. This section defines the problems 
and states the results. 

A maMing on a graph is a set of vertex-disjoint‘ 
edges. Suppose each edge e has a real-valued cosi c(e). 
The cost c(S) of a set of edges S is the sum of the 
individual edge costs. A minimum cost matching is a 
matching of smallest possible cost. There are a num- 
ber of variations: a minimum cost maximum cardinal- 
ity matching is a matching with the greatest number 
of edges possible, which subject to this constraint has 
the smallest possible cost; minimum cost cardinality- 
k matching (for a given integer k); maximum weight 
matching; etc. The weighted matching problem refers 
to all of the problems in this list. 

In stating resource bounds for graph algorithms we 
assume throughout this paper that the given graph has 
n vertices and m edges. For notational simplicity we as- 
sume m 2 n/2. In the weighted matching problem this 
can always be achieved by discarding isolated vertices. 

Weighted matching is a classic problem in network 

optimization; detailed discussions are in [L, LP, PS]. 
Edmonds gave the first polynomial-time algorithm for 
weighted matching [El. Several implementations of Ed- 
monds’ algorithm have been proposed, with increas- 
ingly fast running times: O(n3) [G73, L], O(mn log n) 
[BD, GMG], O(n(m log Tog log 2++,n + n log n)) 

‘[GGS]. Edmonds’ algorithm is a generalization of the’ 
Hungarian algorithm, due to Kuhn, for weighted match- 
ing on bipartite graphs [K55, K56]. Fredman and Tar- 
jan implement the Hungarian algorithm in O(n(m + 
n logn)) time using Fibonacci heaps [FT]. They ask if 
general matching can be done in this time. Our first 
result is an affirmative answer: We show that a search 
in Edmonds’ algorithm can be implemented in time 
O(m + nlogn). This implies that the weighted match- 
ing problem can be solved in time O(n(m + n log n)). 
In both cases the space is O(m). Our implementation 
of a search is in some sense optimal: As shown in [FT] 
for Dijkstra’s algorithm, one search of Edmonds’ algo- 
rithm can be used to sort n numbers. Thus a search 
requires time fI(m + n log n) in an appropriate model of 
computation. 

Another algorithm for weighted matching is based 
on cost scaling. This approach is applicable if all costs 
are integers. The best known time bound for such 
a scaling algorithm is O(dncr(m, n) log n m log (ni’V)) 
[GT89]; here N is the largest magnitude of an edge cost 
and a is an inverse of Ackermann’s function (see below). 
Under the similarity assumption [GSSa] N 5 nOcl), this 
bound is superior to Edmonds’ algorithm. However our 
result is still of interest for at least two reasons: First, 
Edmonds’ algorithm is theoretically attractive because 
it is strongly polynomial. Second, for a number of 

* Department of Computer Science, University of Colorado at Boulder, Boulder, 
CO 80309. Research supported in part by NSF Grant No. CCR-8815636. 
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assume throughout this paper that the given graph has 
n vertices and m edges. For notational simplicity we as- 
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can always be achieved by discarding isolated vertices. 

Weighted matching is a classic problem in network 

optimization; detailed discussions are in [L, LP, PS]. 
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weighted matching [El. Several implementations of Ed- 
monds’ algorithm have been proposed, with increas- 
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‘[GGS]. Edmonds’ algorithm is a generalization of the’ 
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ing on bipartite graphs [K55, K56]. Fredman and Tar- 
jan implement the Hungarian algorithm in O(n(m + 
n logn)) time using Fibonacci heaps [FT]. They ask if 
general matching can be done in this time. Our first 
result is an affirmative answer: We show that a search 
in Edmonds’ algorithm can be implemented in time 
O(m + nlogn). This implies that the weighted match- 
ing problem can be solved in time O(n(m + n log n)). 
In both cases the space is O(m). Our implementation 
of a search is in some sense optimal: As shown in [FT] 
for Dijkstra’s algorithm, one search of Edmonds’ algo- 
rithm can be used to sort n numbers. Thus a search 
requires time fI(m + n log n) in an appropriate model of 
computation. 

Another algorithm for weighted matching is based 
on cost scaling. This approach is applicable if all costs 
are integers. The best known time bound for such 
a scaling algorithm is O(dncr(m, n) log n m log (ni’V)) 
[GT89]; here N is the largest magnitude of an edge cost 
and a is an inverse of Ackermann’s function (see below). 
Under the similarity assumption [GSSa] N 5 nOcl), this 
bound is superior to Edmonds’ algorithm. However our 
result is still of interest for at least two reasons: First, 
Edmonds’ algorithm is theoretically attractive because 
it is strongly polynomial. Second, for a number of 
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