Algorithmic paradigms

Greed. Build up a solution incrementally, myopically optimizing
some local criterion.

6. DYNAMIC PROGRAMMING |

PEARSON
Addison
Wesley

4 Weighfed interval schedu/ing Divide-and-conquer. Break up a problem into independent subproblems;

> segmenfed least squares solve each subproblem; combine solutions to subproblems to form solution
to original problem.

» knapsack problem

» RNA secondary structure Dynamic programming. Break up a problem into a series of overlapping

subproblems)\combine solutions to smaller subproblems to form solution
to large subproblem.

Y
A \

\"\ JON KLEINBERG - EVA TARDOS

1\

fancy name for
caching intermediate results

Lecture slides by Kevin Wayne in a table for later reuse

Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 4/4/18 5:30 AM

Dynamic programming history Dynamic programming applications
Bellman. Pioneered the systematic study of dynamic programming in 1950s. Application areas.
» Computer science: Al, compilers, systems, graphics, theory,
Etymology. » Operations research.
* Dynamic programming = planning over time. » Information theory.
» Secretary of Defense had pathological fear of mathematical research. » Control theory.
» Bellman sought a “dynamic” adjective to avoid conflict. « Bioinformatics.

Some famous dynamic programming algorithms.

THE THEORY OF DYNAMIC PROGRAMMING

mcuARD BELLAN + Avidan-Shamir for seam carving.
1. Introduction. Before turning to a discussion of some representa-

tive problems which will permit us to exhibit various mathematical

features of the theory, let us present brief survey of the funda- » Unix diff for comparin g two files.

‘mental concepts, hopes, and aspirations of dynamic programming.
To begin with, the theory was created to treat the mathematical

problems arising from the study of various multi-stage decision o H i f i

D e ey sty e sensins e s i Viterbi for hidden Markov models.

have a physical system whose state at any time ¢ is determined by a

set of quantities which we call state parameters, or state variables. . .

A certain ties which may be preseroed in dvance or which may » De Boor for evaluating spline curves.

be determined by the process itself, we are called upon to make de-

cisions which will affect the state of the system. These decisions are

equivalent to transformations of the state variables, the choice of a « Bellman-Ford—Moore fo r shortest p ath

decision being identical with the choice of a transformation. The out- .

come of the preceding decisions is to be used to guide the <hoice of

future ones, with the purpose of the whole process that of maximizing H H

o foncion of the parametrs desciiog th ol st » Knuth-Plass for word wrapping text in TEX.
Examples of processes fitting this loose description are furnished

by virtually every phase of modern life, from the planning of indus-

Ul producion Tines o the scheduli of pacent at 5 medic + Cocke-Kasami-Younger for parsing context-free grammars.
clis o the deerminaion o o Lo Ivestent prams Lo
chivry in e from the progamningof i policis * Needleman-Wunsch/Smith-Waterman for sequence alignment.

ventory policies for department stores and military establishments.

Dynamic programming books

FRINCETON ASINARES : e e DYNAMIC FI}%KHHMM]NG

TH HATIENATITS

Approximate Dynamic

. DIN
A INTERVIEWS

Adaptive Dynamic
Programming
|

: forC
Dynamic i
Programming

ey

HANDBOOK of Dynamic Programming

Dynamic Programming o
Approximate Dynamic ‘with Management LEARNING and Optimal Control
Programming Applications Ano APPROXIMATE
e o e (Operational Research) DYNAMIC

PROGRAMMING

Dynamic T e NEURO-DYNAMIC
Programming and ITERATIVE PROGRAMMING
Markov Processes DYNAMIC A

pproximate Dynamic Stochastic
Programming for Optimization in
DynamicVehicle Insurance
fiolting ADynamic
Programming ™
Approach

PROGRAMMING

Weighted interval scheduling

* Job j starts at s;, finishes at f;, and has weight w; > 0.
» Two jobs are compatible if they don’t overlap.
» Goal: find max-weight subset of mutually compatible jobs.

sj wj fi

time

6. DYNAMIC PROGRAMMING |

» weighted interval scheduling

JON KLEINBERG - EVA TARDOS

SECTIONS 6.1-6.2

Earliest-finish-time first algorithm

Earliest finish-time first.
+ Consider jobs in ascending order of finish time.
» Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight = 999 ——> b

| ! weight =1
weight =1 —— a /

time

0 1 2 3 4 5 6 7 8 9 10 11

Weighted interval scheduling

Convention. Jobs are in ascending order of finish time: f, < f,<...<f,.

Def. p(j)=largest index i < j such that job i is compatible with j.
Ex. p8)=1,p(7)=3,p(2) =0. \ i is leftmost interval

that ends before j begins

time

Weighted interval scheduling: brute force

BRUTE-FORCE (7, S1, ..., Sn, fi, ooy fus Wiy ooy Wa)

Sort jobs by finish time and renumber so that fi < 2 < ... < fu.
Compute p[1], p[2], ..., p[n] via binary search.

RETURN COMPUTE-OPT(n).

COMPUTE-OPT(j)

IF(j=0)
RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

Dynamic programming: binary choice

Def. OPT(j) = max weight of any subset of mutually compatible jobs for
subproblem consisting only of jobs 1,2, ..., ;.

Goal. OPT(n) = max weight of any subset of mutually compatible jobs.

Case 1. OPT(j) does not select job j.
* Must be an optimal solution to problem consisting of remaining
jobs 1,2, ..., j—1.

\ optimal substructure property

Case 2. OPT(j) seIects JOb] / (proof via exchange argument)

» Collect profit w;.

* Can’t use incompatible jobs { p(j) + 1,p(j) +2, ..., j—1}.

* Must include optimal solution to problem consisting of remaining
compatible jobs 1,2, ..., p(j).

if j =0

Bellman equation. OPT(j) =
max { OPT(j — 1), w; + OPT(p(j))} ifj>0

Dynamic programming: quiz 1

What is running time of COMPUTE-OPT(#) in the worst case?

A. O(nlogn)
B. O
C. O(1.618"
D. O

COMPUTE-OPT(j)

IF(j=0)
RETURN 0.
ELSE

RETURN max {COMPUTE-OPT(j—1), w; + COMPUTE-OPT(p[j]) }.

Weighted interval scheduling: brute force Weighted interval scheduling: memoization

Observation. Recursive algorithm is spectacularly slow because of Top-down dynamic programming (memoization).
overlapping subproblems = exponential-time algorithm. * Cache result of subproblem j in M[j].

* Use M[j] to avoid solving subproblem j more than once.
Ex. Number of recursive calls for family of “layered” instances grows like

Fibonacci sequence. TOP-DOWN(2, S1s v Snsfls ovesfits Wiy eevs Wn)

Sort jobs by finish time and renumber so that fi < f < ...

IA

S
Compute p[1], p[2], ..., p[n] via binary search.
M[O] <« (). «—— global array

RETURN M-COMPUTE-OPT(n).

[M-COMPUTE-OPT(j)
p(1) = 0, p(i) = j-2
recursion tree IF (M[j] is uninitialized)

M| j] < max { M-COMPUTE-OPT (j—1), w; + M-COMPUTE-OPT(p[j]) }.

RETURN M[j].

Weighted interval scheduling: running time

Claim. Memoized version of algorithm takes O(n log n) time.
Pf.

* Sort by finish time: O(nlogn) via mergesort.

* Compute p[j] for each j: O(nlog n) via binary search.

* M-CoMmpUTE-OPT(j): each invocation takes O(1) time and either Those WhO Cannot remember the

- (1) returns an initialized value M[j]

- (2) initializes M[j] and makes two recursive calls past are Condemned to re peat it

* Progress measure & = # initialized entries among M([1..n]. - Dynamic Programming
- initially ® =0; throughout ® < n.
- (2) increases ® by 1 = < 2n recursive calls.

* Overall running time of M-COMPUTE-OPT(n) is O(n). =

Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find optimal solution?
A. Make a second pass by calling FIND-SOLUTION(n).

FIND-SOLUTION(j)

IF (j=0)
RETURN .
ELSE IF (w; + M[p[j]] > M[j-1])
RETURN {j } U FIND-SOLUTION(p[j]).
ELSE

RETURN FIND-SOLUTION(j—1).

M[j]=max { M[j—-1], w; + M[p[j1] }.

Analysis. # of recursive calls <n = 0O®).

MAXIMUM SUBARRAY PROBLEM

Weighted interval scheduling: bottom-up dynamic programming

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP(n, S1, «.., Sns fls «vos frs Wiy ooy Wi)

Sort jobs by finish time and renumber so that fi < 2 < ... < f,.

Compute p[1],pl2], ..., pln].

M[O] «— 0. previously computed values

ForRj=1TO N / \

M[j] < max { M[j-11, w; + M[p[j]] }.

Running time. The bottom-up version takes O(n log n) time.

MAXIMUM RECTANGLE PROBLEM

Goal. Given an array x of n integer (positive or negative), find a contiguous
subarray whose sum is maximum.

12 5 -1 31 —61| 59 26 -53 58 97 |—93 -23 84 -15 6

187

'Programm\ng

Pearls

Applications. Computer vision, data mining,
genomic sequence analysis, technical job interviews,

Goal. Given an n-by-n matrix A, find a rectangle whose sum is maximum.

13

Applications. Databases, image processing, maximum likelihood
estimation, technical job interviews, ...

21

6. DYNAMIC PROGRAMMING |

» segmented least squares

7

ﬁl/\mnmhm Jesinn

JON KLEINBERG - EVA TARDOS

SECTION 6.3

Segmented least squares

Segmented least squares.
* Points lie roughly on a sequence of several line segments.
» Given n points in the plane: (xi,y1), (x2,¥2) , ..., (xn, yu) With
X1 <x2<..<x, find a sequence of lines that minimizes f(x).

Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

!

goodness of fit number of lines

25

Least squares

Least squares. Foundational problem in statistics.
* Given n points in the plane: (xi,y1), (x2,¥2) , ..., (Xn, Yn)-
* Find a line y = ax + b that minimizes the sum of the squared error:

n

SSE = Y (yi —azi — b)?

i=1

Solution. Calculus = min error is achieved when

nyieiyi — @) (iys) , _ Nayi—aym

a = 5

w377 — (5, 40 n

24

Segmented least squares

Segmented least squares.
+ Points lie roughly on a sequence of several line segments.
» Given n points in the plane: (xi,y1), (x2,¥2) , ..., (xn, yu) With
X1 <x2<..<xs, find a sequence of lines that minimizes f(x).

Goal. Minimize f(x) = E + c L for some constant ¢ >0, where
* E =sum of the sums of the squared errors in each segment.
* L = number of lines.

Dynamic programming: multiway choice

Notation.
* OPT(j) = minimum cost for points pi,p2, ..., pj-
> ey = SSE for for points pi, pis1,pj.

To compute OPT(j):
* Last segment uses points p;, pi«1, ...,p; for some i <j.

* Cost=v¢; + ¢ + OPT(i-1). <«—— optimal substructure property
(proof via exchange argument)

Bellman equation.

0 if j =0

min{eij—O-C-I-OPT(i—l)} if7>0
1<i<j

OPT(j) =

27

Segmented least squares analysis

Theorem. [Bellman 1961] DP algorithm solves the segmented least squares
problem in O(#? time and O(n?) space.

Pf.
* Bottleneck = computing SSE ¢; for each i and j.

Y Tk — Qop i) O Uk) b — Dok Yk~ Qij D Tk
nypap— (e Y n

A5 =
* O(n) to compute ¢;. =

Remark. Can be improved to O(n?) time.

i i i i
* For each i: precompute cumulative sums > zx, > ue. D 27, > Tkl .
k=1 k=1 k=1 k=1

* Using cumulative sums, can compute e; in O(1) time.

29

Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES(#, p1, ..., Pn, €)
FOR j=1TO n
FOorR i=1TO j
Compute the SSE e;; for the points p;, pis1, ..., pj.

M[0] < 0.

previously computed value

FOrR j=1TO n /
M[jl< mini<i<j {ej +c+M[i—1]}.

RETURN M[n].

6. DYNAMIC PROGRAMMING |

» knapsack problem

* Nt e

JON KLEINBERG - EVA TARDOS

SECTION 6.4

28

Knapsack problem

Goal. Pack knapsack so as to maximize total value.
* There are n items: item i provides value v; >0 and weighs w; >0.
* Knapsack has weight capacity of w.

Assumption. All input values are integral.

Ex. {1,2,5} has value $35 (and weight 10).
Ex. {3,4} has value $40 (and weight 11).

<> i Vi Wi
- 1 $1 kg
‘% p) $6 2kg
< 3 $18 Ske
, y 4 $22 6kg
5 $28 7 kg

knapsack instance

Creative Commons Attribution-Share Alike 2.5 (weight limit W = 11)
by Dake 31

Knapsack problem: bottom-up dynamic programming

KNAPSACK(n, W, Wi, ..., Wi, Vi, ...y Vi)

FOR w=0TO W
M[0,w] < 0.

. previously computed values
ForR i=1TOR

FOR w=0TO W / \
IF (wi>w) M[i,w] < M[i-1,w].

ELSE M[i,w] < max {M[i—-1,w], vi + M[i—1,w—w;] }.

RETURN M[n, W].

0 ifi=0
OPT(i,w) = { OPT(i —1,w) if w; > w

max { OPT(i — 1l,w), v; + OPT(i—1,w —w;) } otherwise

33

Dynamic programming: adding a new variable

Def. OPT(i,w) = max-profit subset of items 1, ...,i with weight limit w.
Goal. OPT(n,W).
possibly because w; > w
Case 1. OPT(i,w) does not select item i.
* OPT(i,w) selects best of {1,2,...,i—1} using weight limit w.

\ optimal substructure property
/ (proof via exchange argument)

Case 2. OPT(i,w) selects item i.
* Collect value v..
* New weight limit =w —w;.
* OPT(i,w) selects best of {1,2,...,i—1} using this new weight limit.

Bellman equation.

0 ifi=0
OPT(i,w) = { OPT(i —1,w) if w; > w

max{ OPT(i — l,w), v; + OPT(i— 1,w —w;) } otherwise

32

Knapsack problem: bottom-up dynamic programming demo

subset {1,2}
of items

1,..,i {1,2,3} 0 1 6 7 7 18 24 25 25 25 25

l Vi wi

1 $1 1kg 0 ifi=0

2 $6 2kg oPT(,w) = { OPT(i—1,w) if w; > w
3. 818 Ske i (O P (i o 0 P i G heren
4 $22 6kg

5 $28 7kg

weight limit w
(o112 s el e 7 s loln0lu
0 0 0 0 0 0 0 0 0 0 0

0
1
0 1 1 1 1 1 1 1 1 1 1 1
T
0

(1,2,3,41) 1 6 7 7 18 22 24 28 29 2 40
{1,2,3,4,5} Y 1 6 7 7 18 22 28 29 34 35

OPT(i, w) = max-profit subset of items 1, ..., i with weight limit w.
34

Knapsack problem: running time

Theorem. The DP algorithm solves the knapsack problem with n items
and maximum weight W in ©(n W) time and ©(n W) space.
Pf.
* Takes O(1) time per table entry.
* There are ®(n W) table entries.
« After computing optimal values, can trace back to find solution:
OPT(i, w) takes item i iff M[i,w] > M[i—1,w]. =

weights are integers
between 1 and W

35

COIN CHANGING

Problem. Given n coin denominations { ci,c2, ...,c, } and a target value V,
find the fewest coins needed to make change for V (or report impossible).

Recall. Greedy cashier’s algorithm is optimal for U.S. coin denominations,
but not for arbitrary coin denominations.

Ex. {1,10, 21, 34, 70, 100, 350, 1295, 1500 }.
Optimal. 140¢ =70 + 70.

=%
ﬁi

37

Dynamic programming: quiz 4

Does there exist a poly-time algorithm for the knapsack problem?

Yes, because the DP algorithm takes ©(n W) time.
No, because ®(n W) is not a polynomial function of the input size.

No, because the problem is NP-hard.

o N w® »

Unknown.

36

6. DYNAMIC PROGRAMMING |

» RNA secondary structure

| \Algumhm Desion

JON KLEINBERG - EVA TARDOS

SECTION 6.5

RNA secondary structure RNA secondary structure

RNA. String B =b,b,...b, over alphabet { A,C,G, U }. Secondary structure. A set of pairs S = { (b;,b) } that satisfy:

* [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
Secondary structure. RNA is single-stranded so it tends to loop back and complement: A-U, U-A, C-G, or G-C.

form base pairs with itself. This structure is essential for understanding
behavior of molecule.

C—A
/ N
A A
\A. u 4 G—C G G
base | | \ / \
\ /CG—U—A—A T fo U
€ O 2
U | A—U——U -~ A \ G /
0 Nel oo EEET | G Coeee ACGUGGCCAU
l : : : : s G /t/v
. . . . base pair S is not a secondary structure
C 6—C¢—G6—A—G:-- C)
N S | | in secondary structure A«cccee c (C-A is not a valid Watson-Crick pair)
G
|
| [V A
©
B=ACGUGGCCCAU
RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
41 S={(b1,bw), (ba, bo), (b3, bs) }
RNA secondary structure RNA secondary structure
Secondary structure. A set of pairs S = { (b;,b) } that satisfy: Secondary structure. A set of pairs S = { (b;,b) } that satisfy:

» [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
complement: A-U, U-A, C-G, or G-C.

* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b;, b) ES, theni < j - 4.

» [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
complement: A-U, U-A, C-G, or G-C.

* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b;, b) ES, theni < j - 4.

» [Non-crossing] If (b;b) and (b, by) are two pairs in S, then we cannot

c have i<k<j<X(.

C u

Coveennnns ¢ /\ \' .U/

G\ /G / AN

C
A UGGGGCAU l >

/A 000000000 u A G

AGUUGGCCAU
S is not a secondary structure
Ueooooonns A (<4 intervening bases between G and C) Ueoooonnn A S is not a secondary structure
(G-C and U-A cross)
B=AUGGGGCAU B=ACUUGGCCAU
S={(b1,bo), (b2,b3), (b3,b7) } 43 S={(b1,b10), (b2, bs), (b3,bo) }

RNA secondary structure

Secondary structure. A set of pairs S = { (b;,b) } that satisfy:
» [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b;, b)ES, theni < j - 4.
» [Non-crossing] If (b by) and (b, by) are two pairs in S, then we cannot
have i<k<j<{(.

/ N

C u

AN /

c § /_\
A U

. l AUGUGGCCAU
u A S is a secondary structure

(with 3 base pairs)
B=AUGUGGCCAU
S={(b1,bw), (b2, bv), (b3, bs) } 45

Dynamic programming: quiz 5

Is the following a secondary structure?

A. Yes.

B. No, violates Watson-Crick condition.
C. No, violates no-sharp-turns condition.
D

No, violates no-crossing condition.

G—C

/ \

C G U A A G

A—U—U\G/A
G C U |
. G
: |
C G A (@ coooo00 C
/A 6000000 U

47

RNA secondary structure

Secondary structure. A set of pairs S = { (b;,b) } that satisfy:
* [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b;, b)ES, theni < j - 4.
» [Non-crossing] If (b;»by) and (b, by) are two pairs in S, then we cannot
have i<k<j<{t.

Free-energy hypothesis. RNA molecule will form the secondary structure
with the minimum total free energy.

\

approximate by number of base pairs
(more base pairs = lower free energy)

Goal. Given an RNA molecule B=bb,...b,, find a secondary structure S
that maximizes the number of base pairs.

46

Dynamic programming: quiz 6

Which subproblems?

A. OPT(j) = max number of base pairs in secondary structure
of the substring bb, ... b;.

B. OPT(j) = max number of base pairs in secondary structure
of the substring b;b b,.

il e

C. Either A or B.
D. Neither A nor B.

48

RNA secondary structure: subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring b,b, ... b,

Goal. oPT(n).

match bases b: and bn

Choice. Match bases b, and b;.

1 t j <«—— last base

Difficulty. Results in two subproblems (but one of wrong form).
« Find secondary structure in bb,... b, ;. <«— OPT(-1)

. i i . need more subproblems
Find secondary structure in b, b,,... b, . «— frs oot

49

Dynamic programming: quiz 7

In which order to compute OPT(, j)?

Increasing i, then j.
Increasing j, then i.

Either A or B.

O n = >

Neither A nor B.

51

Dynamic programming over intervals

Def. OPT(i, j)= maximum number of base pairs in a secondary structure
of the substring b,b,,, ... b;.

Case 1. Ifi = j—4.
* OPT(, j) =0 by no-sharp-turns condition.

Case 2. Base b;is not involved in a pair.
* OPT(, j)=OPT(, j—1).

Case 3. Base b; pairs with b, for some i <t < j - 4.
» Non-crossing condition decouples resulting two subproblems.
* OPTG, j)=1+max,{ OPT(i, t— 1)+ OPT(t+ 1, j— 1) }.

match bases bj and b
take max over t such thati<r<j—4 and

b; and bj are Watson-Crick complements 500°097¢%00

Bottom-up dynamic programming over intervals

Q. In which order to solve the subproblems?
A. Do shortest intervals first—increasing order of |j—i|.

RNA-SECONDARY-STRUCTURE(#, b1, ..., by) i
6 9 10
FOR k=5T1TONn-1 4 0 0 0
all needed values
FOrR i=1TOR-k are already computed 3 0 0
j<itk / EER

Compute M([i, j] using formula. !

RETURN M[1, n].

Theorem. The DP algorithm solves the RNA secondary structure problem in

O(n?) time and O(n?) space.

order in which to solve subproblems

50

52

Dynamic programming summary

: typically, only a polynomial
Outline. 4~ number of subproblems

» Define a collection of subproblems.

+ Solution to original problem can be computed from subproblems.

» Natural ordering of subproblems from “smallest” to “largest” that
enables determining a solution to a subproblem from solutions to
smaller subproblems.

Techniques.
+ Binary choice: weighted interval scheduling.
» Multiway choice: segmented least squares.
» Adding a new variable: knapsack problem.
+ Intervals: RNA secondary structure.

Top-down vs. bottom-up dynamic programming. Opinions differ.

53

