
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/20/18 1:44 PM

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

Coin changing

Goal. Given U. S. currency denominations { 1, 5, 10, 25, 100 }, 
devise a method to pay amount to customer using fewest coins. 
 
 
Ex. 34¢. 
 
 

Cashier′s algorithm. At each iteration, add coin of the largest value that

does not take us past the amount to be paid. 

 
Ex. $2.89.

3

Cashier′s algorithm

At each iteration, add coin of the largest value that does not take us past

the amount to be paid.

4

CASHIERS-ALGORITHM (x, c1, c2, …, cn)

SORT n coin denominations so that 0 < c1 < c2 < … < cn.

S ← ∅.

WHILE (x > 0)

 k ← largest coin denomination ck such that ck ≤ x.

 IF no such k, RETURN “no solution.”

 ELSE

 x ← x – ck.

 S ← S ∪ { k }.

RETURN S.

multiset of coins selected

5

Is the cashier’s algorithm optimal?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations c1 < c2 < … < cn provided c1 = 1.

C. Yes, because of special properties of U.S. coin denominations.

D. No.

Greedy algorithms I: quiz 1 Cashier′s algorithm (for arbitrary coin denominations)

Q. Is cashier’s algorithm optimal for any set of denominations?

 
A. No. Consider U.S. postage: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

・Cashier’s algorithm: 140¢ = 100 + 34 + 1 + 1 + 1 + 1 + 1 + 1.

・Optimal: 140¢ = 70 + 70.

 
 
 
 
 
 
 
 
A. No. It may not even lead to a feasible solution if c1 > 1: 7, 8, 9.

・Cashier’s algorithm: 15¢ = 9 + ?.

・Optimal: 15¢ = 7 + 8.

6

Properties of any optimal solution (for U.S. coin denominations)

Property. Number of pennies ≤ 4.

Pf. Replace 5 pennies with 1 nickel.

 
Property. Number of nickels ≤ 1.

Property. Number of quarters ≤ 3. 

Property. Number of nickels + number of dimes ≤ 2.

Pf.

・Recall: ≤ 1nickel.

・Replace 3 dimes and 0 nickels with 1 quarter and 1 nickel;

・Replace 2 dimes and 1 nickel with 1 quarter.

7

quarters
(25¢)

dimes  
(10¢)

nickels  
(5¢)

pennies  
(1¢)

dollars
(100¢)

Optimality of cashier′s algorithm (for U.S. coin denominations)

Theorem. Cashier’s algorithm is optimal for U.S. coins { 1, 5, 10, 25, 100 }.

Pf. [by induction on amount to be paid x]

・Consider optimal way to change ck ≤ x < ck+1 : greedy takes coin k.

・We claim that any optimal solution must take coin k.
- if not, it needs enough coins of type c1, …, ck–1 to add up to x
- table below indicates no optimal solution can do this

・Problem reduces to coin-changing x – ck cents, which, by induction, 
is optimally solved by cashier’s algorithm. ▪

k ck all optimal solutions
must satisfy

1 1 P ≤ 4

2 5 N ≤ 1

3 10 N + D ≤ 2

4 25 Q ≤ 3

5 100 no limit
8

max value of coin denominations
c1, c2, …, ck–1 in any optimal solution

–

4

4 + 5 = 9

20 + 4 = 24

75 + 24 = 99

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

SECTION 4.1

Interval scheduling

・Job j starts at sj and finishes at fj.

・Two jobs compatible if they don’t overlap.

・Goal: find maximum subset of mutually compatible jobs.

10

time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs d and g
are incompatible

Consider jobs in some order, taking each job provided it′s compatible
with the ones already taken. Which rule is optimal?

A. [Earliest start time] Consider jobs in ascending order of sj.  

B. [Earliest finish time] Consider jobs in ascending order of fj.  

C. [Shortest interval] Consider jobs in ascending order of fj – sj.  

D. None of the above.

counterexample for earliest start timecounterexample for shortest interval

11

Greedy algorithms I: quiz 2 Interval scheduling: earliest-finish-time-first algorithm

 
 
 
 
 
 
 
 
 
 
 
 
Proposition. Can implement earliest-finish-time first in O(n log n) time.

・Keep track of job j* that was added last to S.

・Job j is compatible with S iff sj ≥ fj* .

・Sorting by finish times takes O(n log n) time.

12

EARLIEST-FINISH-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)

SORT jobs by finish times and renumber so that f1 ≤ f2 ≤ … ≤ fn.

S ← ∅.

FOR j = 1 TO n

 IF job j is compatible with S

 S ← S ∪ { j }.

RETURN S.

set of jobs selected

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

 
Pf. [by contradiction]

・Assume greedy is not optimal, and let’s see what happens.

・Let i1, i2, ... ik denote set of jobs selected by greedy.

・Let j1, j2, ... jm denote set of jobs in an optimal solution with  
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

13

why not replace
job jr+1 with job ir+1?

job ir+1 exists and finishes no later than jr+1

i1 i2 ir ir+1Greedy: ik. . .

j1 j2 jr jmOptimal: jr+1 . . .

job jr+1 exists
because m > k

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]

・Assume greedy is not optimal, and let’s see what happens.

・Let i1, i2, ... ik denote set of jobs selected by greedy.

・Let j1, j2, ... jm denote set of jobs in an optimal solution with 
i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

i2i1 ir ik

jmjrj1 j2

ir+1

Interval scheduling: analysis of earliest-finish-time-first algorithm

14

solution still feasible and optimal
(but contradicts maximality of r)

ir+1

Greedy:

Optimal:

job ir+1 exists and finishes before jr+1

. . .

. . .

Suppose that each job also has a positive weight and the goal is to 
find a maximum weight subset of mutually compatible intervals.  
Is the earliest-finish-time-first algorithm still optimal?  

A. Yes, because greedy algorithms are always optimal.

B. Yes, because the same proof of correctness is valid.

C. No, because the same proof of correctness is no longer valid.

D. No, because you could assign a huge weight to a job that overlaps
the job with the earliest finish time.

counterexample for earliest finish time

weight = 1

weight = 100

15

Greedy algorithms I: quiz 3

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

SECTION 4.1

Interval partitioning

・Lecture j starts at sj and finishes at fj.

・Goal: find minimum number of classrooms to schedule all lectures  
so that no two lectures occur at the same time in the same room. 
 

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

17

time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

1

2

3

4

jobs e and g
are incompatible

Interval partitioning

・Lecture j starts at sj and finishes at fj.

・Goal: find minimum number of classrooms to schedule all lectures 
so that no two lectures occur at the same time in the same room.

 
Ex. This schedule uses 3 classrooms to schedule 10 lectures.

18

he

f

g i

j

time

1

2

3

intervals are open
(need only 3 classrooms at 2pm)

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

c

b

a

d

Consider lectures in some order, assigning each lecture to first
available classroom (opening a new classroom if none is available).
Which rule is optimal?

A. [Earliest start time] Consider lectures in ascending order of sj.  

B. [Earliest finish time] Consider lectures in ascending order of fj.  

C. [Shortest interval] Consider lectures in ascending order of fj – sj.  

D. None of the above.

1

2

3

counterexample for earliest finish time counterexample for shortest interval

19

Greedy algorithms I: quiz 4 Interval partitioning: earliest-start-time-first algorithm

20

EARLIEST-START-TIME-FIRST (n, s1, s2, …, sn , f1, f2, …, fn)

SORT lectures by start times and renumber so that s1 ≤ s2 ≤ … ≤ sn.

d ← 0.

FOR j = 1 TO n

 IF lecture j is compatible with some classroom

 Schedule lecture j in any such classroom k.

 ELSE

 Allocate a new classroom d + 1.

 Schedule lecture j in classroom d + 1.

 d ← d + 1.

RETURN schedule.

number of allocated classrooms

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in

O(n log n) time.  

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).

・To determine whether lecture j is compatible with some classroom,  
compare sj to key of min classroom k in priority queue.

・To add lecture j to classroom k, increase key of classroom k to fj.

・Total number of priority queue operations is O(n).

・Sorting by start times takes O(n log n) time. ▪ 
 

Remark. This implementation chooses a classroom k whose finish time  
of its last lecture is the earliest.

21

Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number of

intervals that contain any given point.

 
Key observation. Number of classrooms needed ≥ depth.

 
Q. Does minimum number of classrooms needed always equal depth?

A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule 
 whose number of classrooms equals the depth.

22

h

c

a e

f

g i

jd

b

1

2

3

time9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

depth = 3

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two

incompatible lectures in the same classroom. 

Theorem. Earliest-start-time-first algorithm is optimal.

Pf.

・Let d = number of classrooms that the algorithm allocates.

・Classroom d is opened because we needed to schedule a lecture, say j, 
that is incompatible with a lecture in each of d – 1 other classrooms.

・Thus, these d lectures each end after sj.

・Since we sorted by start time, each of these incompatible lectures start

no later than sj.

・Thus, we have d lectures overlapping at time sj + ε.

・Key observation ⇒ all schedules use ≥ d classrooms. ▪

23

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

SECTION 4.2

Scheduling to minimizing lateness

・Single resource processes one job at a time.

・Job j requires tj units of processing time and is due at time dj.

・If j starts at time sj, it finishes at time fj = sj + tj.

・Lateness: ℓ j = max { 0, fj – dj }.

・Goal: schedule all jobs to minimize maximum lateness L = maxj ℓj.

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

lateness = 0lateness = 2 max lateness = 6

26

Schedule jobs according to some natural order. Which order minimizes
the maximum lateness?

A. [shortest processing time] Ascending order of processing time tj.  

B. [earliest deadline first] Ascending order of deadline dj.  

C. [smallest slack] Ascending order of slack: dj – tj.  

D. None of the above.

Greedy algorithms I: quiz 5

counterexample for shortest processing time

1 2

tj 9 10

dj 100 10

L = 9
L* = 0

counterexample for smallest slack

1 2

tj 1 10

dj 2 10

L = 9
L* = 1

Minimizing lateness: earliest deadline first

27

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness L = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EARLIEST-DEADLINE-FIRST (n, t1, t2, …, tn , d1, d2, …, dn)
__

SORT jobs by due times and renumber so that d1 ≤ d2 ≤ … ≤ dn.

t ← 0.

FOR j = 1 TO n

 Assign job j to interval [t, t + tj].

 sj ← t ; fj ← t + tj.

 t ← t + tj.

RETURN intervals [s1, f1], [s2, f2], …, [sn, fn].
__

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

 
 
 
 
 
 
 
 
Observation 2. The earliest-deadline-first schedule has no idle time.

28

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

an optimal schedule

an optimal schedule
with no idle time

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i.
 
 
 
 
 
Observation 3. The earliest-deadline-first schedule is the unique idle-free

schedule with no inversions.

29

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

1 2 3 4 5 6 … n

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i.
 
 
 
 
 
Observation 4. If an idle-free schedule has an inversion, then it has an

adjacent inversion.

Pf.

・Let i– j be a closest inversion.

・Let k be element immediately to the right of j.

・Case 1. [j > k] Then j–k is an adjacent inversion.

・Case 2. [j < k] Then i–k is a closer inversion since i < j < k. ※

30

ij

inversion if i < j

recall: we assume the jobs are numbered so that d1 ≤ d2 ≤ … ≤ dn

a schedule with
an inversion

j ik

two inverted jobs scheduled consecutively

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: 
i < j but j is scheduled before i.
 
 
 
 
 
 
Key claim. Exchanging two adjacent, inverted jobs i and j reduces the

number of inversions by 1 and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓʹ be it afterwards.

・ℓ ḱ = ℓk for all k ≠ i, j.

・ℓ í ≤ ℓ i.

・If job j is late, ℓ ́j

31

ij

i j

before
exchange

after
exchange

f j́

fi

 = f j́ – dj
 = fi – dj
≤ fi – di

≤ ℓi .

inversion if i < j

definition

j now finishes at time fi

i < j ⇒ di ≤ dj

definition

Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.

 
Pf. [by contradiction]

Define S* to be an optimal schedule with the fewest inversions.

・Can assume S* has no idle time.

・Case 1. [S* has no inversions] Then S = S*.

・Case 2. [S* has an inversion]
- let i–j be an adjacent inversion
- exchanging jobs i and j decreases the number of inversions by 1 

without increasing the max lateness
- contradicts “fewest inversions” part of the definition of S* ※

32

optimal schedule can
have inversions

Observation 3

Observation 1

Observation 4

key claim

Greedy analysis strategies

Greedy algorithm stays ahead. Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm’s.

 
Structural. Discover a simple “structural” bound asserting that every

possible solution must have a certain value. Then show that your algorithm

always achieves this bound. 

Exchange argument. Gradually transform any solution to the one found by

the greedy algorithm without hurting its quality. 
 

Other greedy algorithms. Gale–Shapley, Kruskal, Prim, Dijkstra, Huffman, …

33 34

GOOGLE’S FOO.BAR CHALLENGE

A “secret” web tool that Google uses to recruit developers.

・Triggered by specific searches related to programming.

・Algorithmic coding challenges of increasing difficulty.

35

GOOGLE’S FOO.BAR CHALLENGE

Quantum antimatter fuel comes in small pellets, which is convenient since the

many moving parts of the LAMBCHOP each need to be fed fuel one pellet at a

time. However, minions dump pellets in bulk into the fuel intake. You need to

figure out the most efficient way to sort and shift the pellets down to a single

pellet at a time.

The fuel control mechanisms have three operations:

• Add 1 fuel pellet

• Remove 1 fuel pellet

• Divide the entire group of fuel pellets by 2 (due to the destructive energy

released when a quantum antimatter pellet is cut in half, the safety controls

will only allow this to happen if there is an even number of pellets)

Write a function called answer(n) which takes a positive integer n as a string

and returns the minimum number of operations needed to transform the

number of pellets to 1.

29 → 28 → 14 → 7 → 8 → 4 → 2 → 1
36

GOOGLE’S FOO.BAR CHALLENGE

4. GREEDY ALGORITHMS I

‣ coin changing

‣ interval scheduling

‣ interval partitioning

‣ scheduling to minimize lateness

‣ optimal caching

SECTION 4.3

Caching.

・Cache with capacity to store k items.

・Sequence of m item requests d1, d2, …, dm.

・Cache hit: item in cache when requested.

・Cache miss: item not in cache when requested. 
(must evict some item from cache and bring requested item into cache)  

Applications. CPU, RAM, hard drive, web, browser, …. 

Goal. Eviction schedule that minimizes the number of evictions. 
 

Ex. k = 2, initial cache = ab, requests: a, b, c, b, c, a, b.
Optimal eviction schedule. 2 evictions.

Optimal offline caching

38

a a b

b a b

c c b

b c b

c c b

a a b

b a b

cache

requests

cache miss
(eviction)

Optimal offline caching: greedy algorithms

LIFO/FIFO. Evict item brought in least (most) recently.

LRU. Evict item whose most recent access was earliest.

LFU. Evict item that was least frequently requested.

39

cache miss
(which item to eject?)

⋮

a a w x y z

d a w x d z

a a w x d z

b a b x d z

c a b c d z

e a b c d e

g ? ? ? ? ?

b

e

d
⋮

cache

LIFO: eject e

LRU: eject d

FIFO: eject a

requests

Optimal offline caching: farthest-in-future (clairvoyant algorithm)

Farthest-in-future. Evict item in the cache that is not requested until 
farthest in the future.

 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem. [Bélády 1966] FF is optimal eviction schedule.

Pf. Algorithm and theorem are intuitive; proof is subtle.
40

cache miss
(which item to eject?)

a a b c d e

f ? ? ? ? ?

a

b

c

e

g

b

e

d
⋮

FF: eject d

requests

cache

Which item will be evicted next using farthest-in-future schedule?

A.  

B.  

C.  

D.  

E.

41

Greedy algorithms I: quiz 6

⋮

B D B Y A

C D B C A

E D E C A

F ? ? ? ?

C

D

A

E

A

C

⋮

cache

requests

cache miss
(which item to eject?)

Reduced eviction schedules

Def. A reduced schedule is a schedule that brings an item d into the cache

in step j only if there is a request for d in step j and d is not already in the

cache.

42

a a b c

a a b c

c a b c

d a d c

a a d c

b a d b

c a c b

d d c b

d d c b

a reduced schedule

a a b c

a a b c

c a d c

d a d c

a a c b

b a c b

c a c b

d d c b

d d c d

an unreduced schedule

d enters cache
without a request

d enters cache
even though already

in cache

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S ʹ with no more evictions.

Pf. [by induction on number of steps j]

・Suppose S brings d into the cache in step j without a request.

・Let c be the item S evicts when it brings d into the cache.

・Case 1a: d evicted before next request for d.

43

. . c

. . c

. . c

¬d . . c

¬d . . c

¬d . . c

e . . e

. . e

S′

might as well
leave c in cache
until d is evicted

. . c

. . c

. . c

¬d . . d

¬d . . d

¬d . . d

e . . e

. . e

unreduced schedule S

d enters cache 
without a request

step j

d evicted before
next request for dstep j′

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S ʹ with no more evictions.

Pf. [by induction on number of steps j]

・Suppose S brings d into the cache in step j without a request.

・Let c be the item S evicts when it brings d into the cache.

・Case 1a: d evicted before next request for d.

・Case 1b: next request for d occurs before d is evicted.

44

. . c

. . c

. . c

¬d . . c

¬d . . c

¬d . . c

d . . d

. . d

S′

might as well
leave c in cache

until d is requested

step j′

. . c

. . c

. . c

¬d . . d

¬d . . d

¬d . . d

d . . d

. . d

unreduced schedule S

d enters cache 
without a request

d still in cache before
next request for d

step j

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S ʹ with no more evictions.

Pf. [by induction on number of steps j]

・Suppose S brings d into the cache in step j even though d is in cache.

・Let c be the item S evicts when it brings d into the cache.

・Case 2a: d evicted before it is needed.

45

d1 a c

d1 a c

d1 a c

d d1 a c

d d1 a c

c c a c

b c a b

d c a d3

S′

might as well
leave c in cache

until d3 in evicted

d1 a c

d1 a c

d1 a c

d d1 a d3

d d1 a d3

c c a d3

b c a b

d c a d3

unreduced schedule S

d3 enters cache 
even though d1 is
already in cache

d3 evicted

d3 needed

d3 not needed

step j

step j′

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S ʹ with no more evictions.

Pf. [by induction on number of steps j]

・Suppose S brings d into the cache in step j even though d is in cache.

・Let c be the item S evicts when it brings d into the cache.

・Case 2a: d evicted before it is needed.

・Case 2b: d needed before it is evicted.

46

d1 a c

d1 a c

d1 a c

d d1 a c

d d1 a c

c c a c

a c a c

d c a d3

S′

might as well
leave c in cache

until d3 in needed

d1 a c

d1 a c

d1 a c

d d1 a d3

d d1 a d3

c c a d3

a c a d3

d c a d3

unreduced schedule S

step j

d3 enters cache 
even though d1 is
already in cache

d3 needed

d3 not needed

step j′

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S ʹ with no more evictions.

Pf. [by induction on number of steps j]

・Case 1: S brings d into the cache in step j without a request. ✔

・Case 2: S brings d into the cache in step j even though d is in cache. ✔

・If multiple unreduced items in step j, apply each one in turn,  
dealing with Case 1 before Case 2. ▪

47

resolving Case 1 might trigger Case 2

Farthest-in-future: analysis

Theorem. FF is optimal eviction algorithm.

Pf. Follows directly from the following invariant.

 
Invariant. There exists an optimal reduced schedule S that has the same

eviction schedule as SFF through the first j steps. 
Pf. [by induction on number of steps j]
Base case: j = 0.

Let S be reduced schedule that satisfies invariant through j steps.  
We produce S ʹ that satisfies invariant after j + 1 steps.

・Let d denote the item requested in step j + 1.

・Since S and SFF have agreed up until now, they have the same cache

contents before step j + 1.

・Case 1: d is already in the cache. 
S ʹ = S satisfies invariant.

・Case 2: d is not in the cache and S and SFF evict the same item.  
S ʹ = S satisfies invariant.

48

Farthest-in-future: analysis

Pf. [continued]

・Case 3: d is not in the cache; SFF evicts e; S evicts f ≠ e.
- begin construction of Sʹ from S by evicting e instead of f 
 
 
 
 
 
 

- now S ʹ agrees with SFF for first j + 1 steps; we show that having item f
in cache is no worse than having item e in cache 

- let S ʹ behave the same as S until S ʹ is forced to take a different action  
(because either S evicts e; or because either e or f is requested)

49

step j

step j+1

same e f

S

same e d

same e f

S′

same d f

Farthest-in-future: analysis

Let j ʹ be the first step after j + 1 that S ʹ must take a different action from S; 
let g denote the item requested in step j ʹ. 
 
 
 

・Case 3a: g = e.
 Can’t happen with FF since there must be a request for f before e. 

・Case 3b: g = f.
 Element f can’t be in cache of S; let eʹ be the item that S evicts.

- if eʹ = e, S ʹ accesses f from cache; now S and S ʹ have same cache
- if eʹ ≠ e, we make Sʹ evict eʹ and bring e into the cache; 

now S and S ʹ have the same cache

 We let S ʹ behave exactly like S for remaining requests.

50

S ′ is no longer reduced, but can be transformed into a 
reduced schedule that agrees with FF through first j + 1 steps

step j′ same e

S

same f

S′

Sʹ agrees with SFF through first j + 1 steps

involves either e or f (or both)

Farthest-in-future: analysis

Let j ʹ be the first step after j + 1 that S ʹ must take a different action from S; 
let g denote the item requested in step j ʹ. 
 
 
 
 
 

・Case 3c: g ≠ e, f. S evicts e.
- make Sʹ evict f . 
 
 
 

- now S and S ʹ have the same cache
- let S ʹ behave exactly like S for the remaining requests ▪

51

otherwise S′ could have taken the same action

same e

S

same f

S′

step j′ same g

S

same g

S′

step j′

involves wither e or f (or both)

Caching perspective

Online vs. offline algorithms.

・Offline: full sequence of requests is known a priori.

・Online (reality): requests are not known in advance.

・Caching is among most fundamental online problems in CS.

 
 
LIFO. Evict item brought in most recently.

LRU. Evict item whose most recent access was earliest.

 
 
Theorem. FF is optimal offline eviction algorithm.

・Provides basis for understanding and analyzing online algorithms.

・LIFO can be arbitrarily bad.

・LRU is k-competitive: for any sequence of requests σ, LRU(σ) ≤ k FF(σ) + k.

・Randomized marking is O(log k)-competitive.

52

FF with direction of time reversed!

see SECTION 13.8

