4. GREEDY ALGORITHMS | 4. GREEDY ALGORITHMS |

PEARSON

Addison
Wesley

» coin changing » coin changing

» interval scheduling

» inferval partitioning

» scheduling to minimize lateness

» optimal caching

\"\ JON KLEINBERG - EVA TARDOS

1\

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/20/18 1:44 PM

Coin changing Cashier’s algorithm
Goal. Given U. S. currency denominations { 1, 5, 10, 25, 100 }, At each iteration, add coin of the largest value that does not take us past
devise a method to pay amount to customer using fewest coins. the amount to be paid.

CASHIERS-ALGORITHM (X, c1, C2, ..., Cn)

Ex. 34¢. SORT 7 coin denominations so that 0 < ¢1 <2< ... < .

S «— (. <«—— multiset of coins selected
WHILE (x > 0)

., k < largest coin denomination ¢k such that ¢x < x.
Cashier’s algorithm. At each iteration, add coin of the largest value that & ‘ ¢

does not take us past the amount to be paid. IF no such &, RETURN “no solution.
ELSE

X <X — Ck
S <SuU{k}.

RETURN S.

Ex. $2.89.

Greedy algorithms I: quiz 1 l/ Cashier’s algorithm (for arbitrary coin denominations)

Is the cashier’s algorithm optimal? Q. Is cashier’s algorithm optimal for any set of denominations?

A. No. Consider U.S. postage: 1,10, 21, 34, 70, 100, 350, 1225, 1500.

A. Yes, greedy algorithms are always optimal.
. o _ » Cashier’s algorithm: 140¢=100+34+1+1+1+1+1+1.
B. Yes, for any set of coin denominations ci<c; < ... <c, provided ¢, =1. - Optimal: 140¢ = 70 + 70.
C. Yes, because of special properties of U.S. coin denominations.
D. No. 'H
A. No. It may not even lead to a feasible solution if ¢;>1: 7, 8, 9.
+ Cashier’s algorithm: 15¢ =9 + 7.
» Optimal: 15¢ =7+ 8.
5
Properties of any optimal solution (for U.S. coin denominations) Optimality of cashier’s algorithm (for U.S. coin denominations)
Property. Number of pennies < 4. Theorem. Cashier’s algorithm is optimal for U.S. coins { 1, 5, 10, 25, 100 }.
Pf. Replace 5 pennies with 1 nickel. Pf. [by induction on amount to be paid x]
- Consider optimal way to change ¢, < x<c¢,, : greedy takes coin k.
Property. Number of nickels < 1. * We claim that any optimal solution must take coin k.
Property. Number of quarters < 3. - if not, it needs enough coins of type ¢, ...,c,; to add up to x
- table below indicates no optimal solution can do this
Property. Number of nickels + number of dimes < 2. « Problem reduces to coin-changing x — ¢, cents, which, by induction,
Pf. is optimally solved by cashier’s algorithm. =

* Recall: < 1nickel.

) Replace 3 dimes and 0 nickels with 1 G and 1 kael; k c all optimal solutions max value of coin denominations
» Replace 2 dimes and 1 nickel with 1 quarter. . must satisfy c1, €2, ..., €1 in any optimal solution

1 1 P <4 -

2 5 N=1 4

3 10 N+D <2 4+5=9

4 25 0<3 20+4 =24
dollars quarters dimes nickels pennies 5 100 no limit 75+24=99

(100¢) (25¢) (10¢) (5¢) (1¢) 7

4. GREEDY ALGORITHMS |

» interval scheduling

lﬂAlgnmhm Jesin

JON KLEINBERG - EVA TARDOS

SECTION 4.1

Greedy algorithms |: quiz 2 |>

Consider jobs in some order, taking each job provided it's compatible
with the ones already taken. Which rule is optimal?

A. [Earliest start time] Consider jobs in ascending order of s;.

B. [Earliest finish time] Consider jobs in ascending order of f.

C. [Shortest interval] Consider jobs in ascending order of f;—s;.

D. None of the above.

Interval scheduling

* Job j starts at s; and finishes at f,.
» Two jobs compatible if they don’t overlap.
» Goal: find maximum subset of mutually compatible jobs.

jobsdandg
7 are incompatible

Interval scheduling: earliestfinish-time-first algorithm

EARLIEST-FINISH-TIME-FIRST (1, S1, 82, ..., Sn, f1, f25 -5 fi) D

SORT jobs by finish times and renumber so that fi < £ < ... < fu.
S < . «— setof jobs selected
ForR j=1 TO n
IF job j is compatible with S
S <SuU{j}.

RETURN S.

Proposition. Can implement earliest-finish-time first in O(n log n) time.
* Keep track of job j* that was added last to S.
* Job jis compatible with S iff s5; = ..
* Sorting by finish times takes O(n log n) time.

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
» Assume greedy is not optimal, and let’s see what happens.
- Letiy, i, ... iidenote set of jobs selected by greedy.
- Letj, jy ... j, denote set of jobs in an optimal solution with
i\ = ji,i=Jjs, ..., i, = j, for the largest possible value of r.

job i, exists and finishes no later than j,,,

Greedy: i

; X . ! ; .
Optimal: Ji J2 Jr i © 00

job j,., exists why not replace
because m >k job j.., with job i,,?

Greedy algorithms |: quiz 3 |)\

Suppose that each job also has a positive weight and the goal is to
find a maximum weight subset of mutually compatible intervals.
Is the earliest-finish-time-first algorithm still optimal?

A. Yes, because greedy algorithms are always optimal.

B. Yes, because the same proof of correctness is valid.

C. No, because the same proof of correctness is no longer valid.
D

No, because you could assign a huge weight to a job that overlaps
the job with the earliest finish time.

Interval scheduling: analysis of earliest-finish-time-first algorithm

Theorem. The earliest-finish-time-first algorithm is optimal.

Pf. [by contradiction]
» Assume greedy is not optimal, and let’s see what happens.
- Letiy, i, ... iy denote set of jobs selected by greedy.
- Letj, jy ... j, denote set of jobs in an optimal solution with
i\ = ji,i=Jjs, ..., i, = j, for the largest possible value of r.

job i, exists and finishes before j,,,

Greedy: i iy i lre1

!

solution still feasible and optimal
(but contradicts maximality of r)

4. GREEDY ALGORITHMS |

» interval partitioning

‘0 Algorithm Design

JON KLEINBERG - EVA TARDOS

SECTION 4.1

Interval partitioning

* Lecture j starts at s; and finishes at f;.
» Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 4 classrooms to schedule 10 lectures.

jobseandg
are incompatible

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

Greedy algorithms |: quiz 4

Consider lectures in some order, assigning each lecture to first
available classroom (opening a new classroom if none is available).
Which rule is optimal?

A. [Earliest start time] Consider lectures in ascending order of s;.

B. [Earliest finish time] Consider lectures in ascending order of f.

C. [Shortest interval] Consider lectures in ascending order of f; —s;.

D. None of the above.

Interval partitioning

* Lecture j starts at s; and finishes at f;.
» Goal: find minimum number of classrooms to schedule all lectures
so that no two lectures occur at the same time in the same room.

Ex. This schedule uses 3 classrooms to schedule 10 lectures.

intervals are open
(need only 3 classrooms at 2pm)

9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30

Interval partitioning: earliest-start-time-first algorithm

time

EARLIEST-START-TIME-FIRST (1, S1, 82, « ., Sn s f15f25 -5 [n)

SORT lectures by start times and renumber so that s; < 52 < ...

IA
3

d <— (. <— number of allocated classrooms
FOrR j=1TO R
IF lecture j is compatible with some classroom
Schedule lecture j in any such classroom k.
ELSE
Allocate a new classroom d + 1.
Schedule lecture j in classroom d + 1.
d<—d+1.

RETURN schedule.

20

Interval partitioning: earliest-start-time-first algorithm

Proposition. The earliest-start-time-first algorithm can be implemented in
O(n log n) time.

Pf. Store classrooms in a priority queue (key = finish time of its last lecture).
* To determine whether lecture j is compatible with some classroom,
compare s; to key of min classroom k in priority queue.
* To add lecture j to classroom k, increase key of classroom k to f;.
* Total number of priority queue operations is O(n).
* Sorting by start times takes O(n log n) time. =

Remark. This implementation chooses a classroom k whose finish time
of its last lecture is the earliest.

21

Interval partitioning: analysis of earliest-start-time-first algorithm

Observation. The earliest-start-time first algorithm never schedules two
incompatible lectures in the same classroom.

Theorem. Earliest-start-time-first algorithm is optimal.
Pf.
* Let d = number of classrooms that the algorithm allocates.
* Classroom d is opened because we needed to schedule a lecture, say j,
that is incompatible with a lecture in each of d— 1 other classrooms.
+ Thus, these d lectures each end after s,
- Since we sorted by start time, each of these incompatible lectures start
no later than ;.
+ Thus, we have d lectures overlapping at time s, + ¢.
» Key observation = all schedules use = d classrooms. =

23

Interval partitioning: lower bound on optimal solution

Def. The depth of a set of open intervals is the maximum number of
intervals that contain any given point.

Key observation. Number of classrooms needed = depth.
Q. Does minimum number of classrooms needed always equal depth?

A. Yes! Moreover, earliest-start-time-first algorithm finds a schedule
whose number of classrooms equals the depth.

depth = 3

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 time

22

4. GREEDY ALGORITHMS |

» scheduling to minimize lateness

‘0 Algorithm Design

JON KLEINBERG - EVA TARDOS

SECTION 4.2

Scheduling to minimizing lateness

» Single resource processes one job at a time.

* Job j requires ; units of processing time and is due at time d;.
 If j starts at time s, it finishes at time fi=s;+1;.

* Lateness: £;=max {0, fj-d;}.

+ Goal: schedule all jobs to minimize maximum lateness L = max; ¢;.

BERREE
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness = 0 max lateness = 6
d=9 d,=8 dg=15 d, =6 ds=14 dy=9
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
25
Minimizing lateness: earliest deadline first
EARLIEST-DEADLINE-FIRST (n, t1, t2, ..., ta,d1, d2, ..., dy)

SORT jobs by due times and renumber so thatdy < d> < ... < d.
t<0.
FOorR j=1TOR

Assign job j to interval [z, + ;].

sp 1y fi < t+1

t—t+t

RETURN intervals [s1, fil, [s2, /2], .., [Sn, ful-

max lateness L = 1

!

d=6 =8 dy=9 d,=9

27

Greedy algorithms |: quiz 5

DN
7

Schedule jobs according to some natural order. Which order minimizes
the maximum lateness?

A. [shortest processing time] Ascending order of processing time .
B. [earliest deadline first] Ascending order of deadline d;.
C. [smallest slack] Ascending order of slack: d;—t,.

D. None of the above.

Minimizing lateness: no idle time

Observation 1. There exists an optimal schedule with no idle time.

an optimal schedule d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 11
an optimal schedule d=4 d=6 d=12
with no idle time 0 1 2 3 4 5 6 7 8 9 10 11

Observation 2. The earliest-deadline-first schedule has no idle time.

28

26

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if i <j
omiersion IV
an inversion

recall: we assume the jobs are numbered so thatdi <d> < ... <d,

Observation 3. The earliest-deadline-first schedule is the unique idle-free
schedule with no inversions.

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if i <j
nans I
exchange J
chan I
exchange J

Key claim. Exchanging two adjacent, inverted jobs i and j reduces the
number of inversions by 1 and does not increase the max lateness.
Pf. Let £ be the lateness before the swap, and let ¢’ be it afterwards.

* U=t forall k=i,j.

s U=t

f} — dj <« definition

« If job jis late, ¢

fi = dj <—— jnow finishes at time f;

=< fi—di «—— i<j = di=d;

IA
o~

<«—— definition

29

31

Minimizing lateness: inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i <jbutjis scheduled before i.

inversion if i <j
omimersion IV
an inversion

recall: we assume the jobs are numbered so thatdi <d> < ... <d,

Observation 4. If an idle-free schedule has an inversion, then it has an
adjacent inversion.
Pf. ™~ two inverted jobs scheduled consecutively

* Leti-j be a closest inversion.

* Let k be element immediately to the right of j.

* Case 1. [j> k] Then j—k is an adjacent inversion.

* Case 2. [j< k] Then i-kis a closer inversion since i < j< k. %

30

Minimizing lateness: analysis of earliest-deadline-first algorithm

Theorem. The earliest-deadline-first schedule S is optimal.
optimal schedule can
Pf. [by contradiction] / flaelinversions
Define $* to be an optimal schedule with the fewest inversions.
* Can assume S* has no idle time. <—— Observation 1
* Case 1. [$* has no inversions] Then S = S*. <«—— Observation 3
* Case 2. [S* has an inversion]
- let i—j be an adjacent inversion <«—— Observation 4
- exchanging jobs i and j decreases the number of inversions by 1
without increasing the max lateness <— key claim
- contradicts “fewest inversions” part of the definition of §* %

32

Greedy analysis strategies GOOGLE’S FOO.BAR CHALLENGE

Greedy algorithm stays ahead. Show that after each step of the greedy

algorithm, its solution is at least as good as any other algorithm’s. A “secret” web tool that Google uses to recruit developers.
- Triggered by specific searches related to programming.
Structural. Discover a simple “structural” bound asserting that every . Algorithmic coding challenges of increasing difficulty.
possible solution must have a certain value. Then show that your algorithm
aIWayS achieVeS thlS bound. ® Chrome File Edit View History Bookmarks Window Help LR) 3 = 4) = @) Sun
[El mutex lock - Google Sear- x | [google search game - Goo X | New Tab x
€ c 2sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=
Exchange argument. Gradually transform any solution to the one found by Mgy | mutex lock g o N

News ages More Search tools

the greedy algorithm without hurting its quality.

You're speaking our language. Up for a challenge?

T want to play J| No_thanks |

Other greedy algorithms. Gale-Shapley, Kruskal, Prim, Dijkstra, Huffman, ...
Mutual exclusion - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Mutual_exclusion ~ W

"mutex" redirects here. For the computer prograr at negotiates mutual
exclusion among threads, see lock (computer scient ure 1: Two nodes,
Lock - Dekker's algorithm - Critical section - Reentrant mutex

Mutex Lock Code Examples (Multithreaded Progl
docs.oracle.com » ... » Using Mutual Exclusion Locks ~ Oracle
The two functions in Example 4-1 use the mutex lock for diffe
increment_count() function uses the mutex lock simply to ensure an atomic

mutex::lock - C++ Reference - Cplusplus.com
www.cplusplus.com > Reference » <mutex> > mutex ~

33 34

GOOGLE’S FOO.BAR CHALLENGE

GOOGLE’S FOO.BAR CHALLENGE

Quantum antimatter fuel comes in small pellets, which is convenient since the
many moving parts of the LAMBCHOP each need to be fed fuel one pellet at a Level 3 complete. You are now on level 4. Challenges to complete level: 2.
time. However, minions dump pellets in bulk into the fuel intake. You need to

figure out the most efficient way to sort and shift the pellets down to a single Level o
pellet at a time. t::i §
Level &
The fuel control mechanisms have three operations: Level 5
e Add 1 fuel pellet Excellent! You've destroyed Commander Lambda's doomsday device and saved Bunny Planet! But
e Remove 1 fuel pellet there's one small problem: the LAMBCHOP was a wool-y important part of her space station,

and when you blew it up, you triggered a chain reaction that's tearing the station apart.

e Divide the entire group of fuel pellets by 2 (due to the destructive energy
Can you rescue the imprisoned bunnies and escape before the entire thing explodes?

released when a quantum antimatter pellet is cut in half, the safety controls

Type request to request a new challenge now, or come back later.

will only allow this to happen if there is an even number of pellets)
[#1] The code is strong with this one. Share solutions with a Google recruiter?

Write a function called answer(n) which takes a positive integer n as a string [Yles [N]o [Alsk me later: A
and returns the minimum number of operations needed to transform the Response: contact postponed.

number of pellets to 1. To share your progress at any time, use the recruitme command.

2928 > 14—>7>8>4—>2->1 N "

Optimal offline caching

Caching.
4. GREEDY ALGORITHMS | + Cache with capacity to store k items.
+ Sequence of m item requests d,,d,, ...,d,,.
» Cache hit: item in cache when requested.

» Cache miss: item not in cache when requested.
(must evict some item from cache and bring requested item into cache)

¥,

QUULUNSIIR » oprimal caching

JON KLEINBERG - EVA TARDOS

Applications. CPU, RAM, hard drive, web, browser,

Goal. Eviction schedule that minimizes the number of evictions.
cache cache miss

(eviction)
A
SECTION 4.3
Ex. k=2, initial cache = ab, requests: a,b,c,b,c,a,b. alb
~ B 7
Optimal eviction schedule. 2 evictions. < ¢ ,
J c
v
a b 38
Optimal offline caching: greedy algorithms Optimal offline caching: farthestin-future (clairvoyant algorithm)
LIFO/FIFO. Evict item brought in least (most) recently. Farthest-in-future. Evict item in the cache that is not requested until
LRU. Evict item whose most recent access was earliest. farthest in the future.
LFU. Evict item that was least frequently requested. cache

a b c d e
f 9 9 N N 9 ¢ _ ca_che miss.
cache / : : : : : (which item to eject?)

4 FIFO: eject a

3]

s}

z LRU: eject d

h

w y
w d
w d z
M a b x d z
b d
b d
? ?

¢ s la o

Z

s1sanbaa

c e LIFO: eject e

?

QU

FF: eject d

47 \
cache miss

(which item to eject?)

1

Theorem. [Bélady 1966] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

39 40

Greedy algorithms I: quiz 6 '/

Which item will be evicted next using farthest-in-future schedule?

cache
:]
- EEEERA
B.
C F 5 5 5 - cache miss
E : : : : (which item to eject?)

> "

E.

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [by induction on number of steps j]

» Suppose S brings d into the cache in step j without a request.

* Let ¢ be the item S evicts when it brings d into the cache.

* Case la: d evicted before next request for d.

unreduced schedule S S’

d enters cache

without a request

step j -

QL
o

might as well
<«— leave cin cache
until d is evicted

J
SN

9
o

d evicted before

step j next request for d

(%
&mg_g_Hamn

o | X
e lals
[y

43

Reduced eviction schedules

Def. A reduced schedule is a schedule that brings an item d into the cache
in step j only if there is a request for d in step j and d is not already in the
cache.

a b c d enters cache a b c
without a request

a ¢ b d enters cache a ¢ b
even though already

d ¢ b / in cache d ¢ b

an unreduced schedule a reduced schedule

42

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S' with no more evictions.
Pf. [by induction on number of steps j]

» Suppose S brings d into the cache in step j without a request.

* Let ¢ be the item S evicts when it brings d into the cache.

» Case la: d evicted before next request for d.

» Case 1b: next request for d occurs before d is evicted.

s’

c
=1
=
(3
Qo
<
o
o
Q.
w
fa)
=
[3
Qo
<
m
w

o

c

step j = d enters cache
without a request
d
d
d
d

Y
Q
o

o

might as well
<«— leave cin cache
until d is requested

|
U

9

4
S

d still in cache before

next request for d

Q

step j’

.!
L || 8
[

44

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [by induction on number of steps j]
* Suppose S brings d into the cache in step j even though d is in cache.
* Let ¢ be the item S evicts when it brings d into the cache.
» Case 2a: d evicted before it is needed.

unreduced schedule S

d

s
- di a ¢ - d a c
- di a c - d a c
- d a ds enters cache - 4 a ¢

even though d; is .

step j di a 4— already in cache d a ¢ IerZ\I/geh::xi:e
di a di3 <«— ds;notneeded di a c until ds in evicted
c a ds a ¢

step j’ c a b | «<— dsevicted ¢ a b
@ :

c a | d3 <«— dsneeded

45

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S’ with no more evictions.
Pf. [by induction on number of steps j]
* Case 1: S brings d into the cache in step j without a request. v
* Case 2: S brings d into the cache in step j even though d is in cache. v
* If multiple unreduced items in step j, apply each one in turn,
dealing with Case 1 before Case 2. =

\

resolving Case 1 might trigger Case 2

47

Reduced eviction schedules

Claim. Given any unreduced schedule S, can transform it into a reduced

schedule S’ with no more evictions.
Pf. [by induction on number of steps j]

* Suppose S brings d into the cache in step j even though d is in cache.

* Let ¢ be the item S evicts when it brings d into the cache.
» Case 2a: d evicted before it is needed.
* Case 2b: d needed before it is evicted.

step j

step j’

unreduced schedule S

d
di
di
d
d

d

@

c

U

c

a

c
c

ds
ds
ds
ds

d; enters cache
even though d is
/A8l <« already in cache

<«— ds not needed

<«— d3 needed

Farthestin-future: analysis

|
|
|
[< |

c

might as well
leave c in cache
until d3 in needed

Theorem. FF is optimal eviction algorithm.
Pf. Follows directly from the following invariant.

Invariant. There exists an optimal reduced schedule S that has the same

eviction schedule as S, through the first j steps.
Pf. [by induction on number of steps ;]
Base case: j=0.

Let S be reduced schedule that satisfies invariant through j steps.

We produce S’ that satisfies invariant after j + 1 steps.

Let d denote the item requested in step j + 1.

Since S and Sz have agreed up until now, they have the same cache
contents before step j+ 1.

Case 1: dis already in the cache.

S’ = S satisfies invariant.

Case 2: dis not in the cache and S and Sy evict the same item.

S’ = S satisfies invariant.

46

48

Farthestinfuture: analysis

Pf. [continued]
» Case 3: dis not in the cache; S, evicts e; S evicts f = e.
- begin construction of §' from S by evicting e instead of f

same e f step j same e f
S S’

same e d step j+1 same d f

- now S’ agrees with Sy for first j + 1 steps; we show that having item f
in cache is no worse than having item ¢ in cache

- let S’ behave the same as S until S’ is forced to take a different action
(because either S evicts e; or because either e or f is requested)

49

Farthestinfuture: analysis

Let j' be the first step after j+ 1 that S’ must take a different action from §;

let ¢ denote the item requested in step j'. t
involves wither e or f (or both)

”
same e step J same f

otherwise S’ could have taken the same action

|

* Case 3c: g#e,f. Sevictse.
- make S’ evict f.

same g step j’ same g

- now S and S’ have the same cache
- let S’ behave exactly like S for the remaining requests =

51

Farthestinfuture: analysis

Let j' be the first step after j+ 1 that S’ must take a different action from S;

let ¢ denote the item requested in step j'. t
involves either e or f (or both)

”
same e step J same f

S S’

§' agrees with Srr through first j + 1 steps

* Case 3a: g=e. /
Can’t happen with FF since there must be a request for f before e.

* Case 3b: g=f.
Element f can’t be in cache of S; let ¢’ be the item that S evicts.
- ife’=e, S" accesses f from cache; now S and S’ have same cache
- if ¢ # e, we make S’ evict ¢’ and bring e into the cache;
now S and S’ have the same cache
We let S’ behave exactly like S for remaining requests.

S’ is no longer reduced, but can be transformed into a
reduced schedule that agrees with FF through first j + 1 steps 50

Caching perspective

Online vs. offline algorithms.
» Offline: full sequence of requests is known a priori.
» Online (reality): requests are not known in advance.
» Caching is among most fundamental online problems in CS.

LIFO. Evict item brought in most recently.
LRU. Evict item whose most recent access was earliest.

FF with direction of time reversed!

Theorem. FF is optimal offline eviction algorithm.
* Provides basis for understanding and analyzing online algorithms.
* LIFO can be arbitrarily bad.
* LRU is k-competitive: for any sequence of requests o, LRU(0) < k FF(0) + k.

. Raaning is O(log k)-competitive.

see SECTION 13.8
52

