

4. GREEDY ALGORITHMS II

- ▶ red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- Boruvka's algorithm demo

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

SECTION 6.1

4. GREEDY ALGORITHMS II

- ▶ red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- ▶ Boruvka's algorithm demo

Red rule. Let *C* be a cycle with no red edges. Select an uncolored edge of *C* of max weight and color it red.

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

the input graph

Red rule. Let *C* be a cycle with no red edges. Select an uncolored edge of *C* of max weight and color it red.

apply the red rule to the cycle

Red rule. Let *C* be a cycle with no red edges. Select an uncolored edge of *C* of max weight and color it red.

apply the red rule to the cycle

Red rule. Let *C* be a cycle with no red edges. Select an uncolored edge of *C* of max weight and color it red.

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the blue rule to the cutset

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the blue rule to the cutset

Red rule. Let *C* be a cycle with no red edges. Select an uncolored edge of *C* of max weight and color it red.

apply the red rule to the cycle

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the blue rule to the cutset

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the blue rule to the cutset

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the blue rule to the cutset

Blue rule. Let *D* be a cutset with no blue edges. Select an uncolored edge in *D* of min weight and color it blue.

apply the red rule to the cycle

Greedy algorithm. Upon termination, the blue edges form a MST.

a minimum spanning tree

SECTION 4.5

4. GREEDY ALGORITHMS II

- red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- ▶ Boruvka's algorithm demo

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to *S*.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

Initialize S = any node, $T = \emptyset$.

- Add to *T* a min-weight edge with one endpoint in *S*.
- Add new node to S.

SECTION 4.5

4. GREEDY ALGORITHMS II

- ▶ red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- ▶ Boruvka's algorithm demo

Consider edges in ascending order of weight:

SECTION 4.5

4. GREEDY ALGORITHMS II

- red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- ▶ Boruvka's algorithm demo

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

Start with all edges in *T* and consider them in descending order of weight:

SECTION 6.2

4. GREEDY ALGORITHMS II

- red-rule blue-rule demo
- Prim's algorithm demo
- Kruskal's algorithm demo
- reverse-delete algorithm demo
- Boruvka's algorithm demo

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

