2. ALGORITHM ANALYSIS 2. ALGORITHM ANALYSIS

PEARSON

Addison
Wesley

» computational tractability » computational tractability

» asymptotic order of growth

» implementing Gale-Shapley

» survey of common running times

AI oithm Desigr

lOII KLEINBERG - EVA 'I'ARDOS

JON KLEINBERG - EVA TARDOS

SECTION 2.1
Lecture slides by Kevin Wayne

Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 2/12/18 7:26 PM

A strikingly modern thought Models of computation: Turing machines

Deterministic Turing machine. Simple and idealistic model.

1:0
#—> HALT@®

YES @

“ As soon as an Analytic Engine exists, it will necessarily guide the future

course of the science. Whenever any result is sought by its aid, the question

will arise— By what course of calculation can these results be arrived at by

the machine in the shortest time? ” — Charles Babbage (1864)

###01100111###

o Gy (ies do ya Running time. Number of steps.
h to t th k? AmR
ave fotturn the cran Memory. Number of tape cells utilized.

Caveat. No random access of memory.
» Single-tape TM requires > n2 steps to detect n-bit palindromes.
* Easy to detect palindromes in < cn steps on a real computer.

Analytic Engine

Models of computation: word RAM

assume w = logaz n

Word RAM.
* Each memory location and input/output cell stores a w-bit integer.
» Primitive operations: arithmetic/logic operations, read/write memory,
array indexing, following a pointer, conditional branch, ...

N

constant-time C-style operations
(w=64)

nput [[[[[[]]

program

owput [T [= [1]

Running time. Number of primitive operations.
Memory. Number of memory cells utilized.

Caveat. At times, need more refined model (e.g., multiplying n-bit integers).

Polynomial running time

Desirable scaling property. When the input size doubles, the algorithm
should slow down by at most some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exist constants ¢ > 0 and d > 0 such that,
for every input of size n, the running time of the algorithm
is bounded above by c nd primitive computational steps. <«— (hoose ¢ = 2¢

von Neumann Godel
(1953) (1956)

Brute force

Brute force. For many nontrivial problems, there is a natural brute-force
search algorithm that checks every possible solution.

* Typically takes 2" steps (or worse) for inputs of size n.

* Unacceptable in practice.

Ex. Stable matching problem: test all n! perfect matchings for stability.

Polynomial running time

We say that an algorithm is efficient if it has a polynomial running time.

Theory. Definition is (relatively) insensitive to model of computation.

Practice. It really works!
* The poly-time algorithms that people develop have both
small constants and small exponents.
» Breaking through the exponential barrier of brute force typically
exposes some crucial structure of the problem.

/

Map graphs in polynomial time

Exceptions. Some poly-time algorithms in the wild

have galactic constants and/or huge exponents.

Abstract

ADS'97and STOC'98)

Q. Which would you prefer: 201! or p!+002nn ?

n120

Worst-case analysis

Worst case. Running time guarantee for any input of size n.
» Generally captures efficiency in practice.

- Draconian view, but hard to find effective alternative.

Exceptions. Some exponential-time algorithms are used widely in practice

because the worst-case instances don’t arise.

Optimal
solution
!

simplex algorithm

'\ Mot Deig

JON KLEINBERG - EVA TARDOS

SECTION 2.2

.
1

gXeD
THEREFORE, 188!

i‘
-1

Linux grep k-means algorithm

2. ALGORITHM ANALYSIS

» asymptotic order of growth

Other types of analyses

Probabilistic. Expected running time of a randomized algorithm.
Ex. The expected number of compares to quicksort n elements is ~2n1n n.

Amortized. Worst-case running time for any sequence of n operations.
Ex. Starting from an empty stack, any sequence of n push and pop
operations takes O(n) primitive computational steps using a resizing array.

Also. Average-case analysis, smoothed analysis, competitive analysis, ...

Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants ¢>0 and n, = 0
such that 0 < f(n) < ¢- g(n) for all n = n,.
¢ gn)
EX. f(n)=32n2+17n+ 1.
* f(n) is O(n?). <«—— choose c=50,n=1
* f(n) is neither O(n) nor O(n log n).

fm)

Typical usage. Insertion sort makes O(n2) compares to sort n elements.

Analysis of algorithms: quiz 1 >

Let f(n) = 3n2 + 17 n logz n + 1000. Which of the following are true?

A, f(n)is O(n2).

B. f(n)is Om3).

C. Both A and B.

D. Neither A nor B.

Big O notation: properties

Reflexivity. fis O(f).
Constants. If fis O(g) and ¢ >0, then cf is O(g).
Products. If f1is O(g1) and f2 is O(g2), then fi f2 is O(g1 g2).

Pf.
e 3¢;>0and n, = 0 such that 0< fi(n) < ci- gi(n) forall n > n,.

\Y

e 3¢,>0and n,= 0 such that 0 = f2(n) < c2- g2(n) for all n = n,.
e Then, 0< fi(n) - fo(n) < c1-c2-gi(n) - g2(n) for all n = max {n;, n,}. =

Sums. If fiis O(g1) and f is O(g2), then f1 + f2 is O(max {g1, g2}).
N

ignore lower-order terms

Transitivity. If fis O(g) and g is O(h), then fis O(h).

Ex. f(n)=5n3+ 3n2+ n+ 1234 is O(n3).

Big O notational abuses

One-way “equality.” O(g(n)) is a set of functions, but computer scientists
often write f(n) = O(g(n)) instead of f(n) € O(g(n)).

Ex. Consider gi(n)=5n3 and gx(n) =3n2.
* We have gi(n) = O(n3) and g2(n) = O(n3).
* But, do not conclude gi(n) = g2(n).

Domain and codomain. fand g and real-valued functions.
* The domain is typically the natural numbers: N — R.
* Sometimes we extend to the reals: R.o— R. N\ input size, recurrence relations

+ Or restrict to a subset. o
plotting, limits, calculus

Bottom line. OK to abuse notation in this way; not OK to misuse it.

Big Omega notation

Lower bounds. f(n) is Q(g(n)) if there exist constants ¢>0 and n, > 0
such that f(n) = ¢+ g(n) = 0 for all n = n,.
f@)
Ex. f(n)=32n2+ 17n+ 1.
* f(n) is both Q(n2) and Q(n). <«— choose c=32,n=1
* f(n) is not Qn3).

c-gn)

no n

Typical usage. Any compare-based sorting algorithm requires Q(n log n)
compares in the worst case.

Vacuous statement. Any compare-based sorting algorithm requires
at least O(n log n) compares in the worst case.

Analysis of algorithms: quiz 2

Which is an equivalent definition of big Omega notation?

A, fln) is Qg(n) iff g(n) is O(f(n)).

B. f(n) is Q(g(n)) iff there exist constants ¢ >0 such that f(n) = c- g(n) = 0
for infinitely many n.

C. Both A and B.

D. Neither A nor B.

Analysis of algorithms: quiz 3

Which is an equivalent definition of big Theta notation?

A. f(n)is O(g(n)) iff f(n) is both O(g(n)) and Q(g(n)).
B. f(n) is O(g(n)) iff Jim % = ¢ for some constant0 < ¢ < .

C. Both A and B.

D. Neither A nor B.

Big Theta notation

Tight bounds. f(n) is ©(g(n)) if there exist constants ¢, >0, c2>0, and n, > 0

such that 0 < ci- g(n) < f(n) < 2+ g(n) forall n = n,. o

fm)
Ex. f(n)=32n2+ 17n+ 1.
* f(n) is ©O(n2). <«— choose ci=32,c2=50,n0= 1
* f(n) is neither ©(n) nor O(n3).

ci - g(n)

Typical usage. Mergesort makes ©(n log n) compares to sort n elements.

/

between 5 nlogx n
and n logz n

Asymptotic bounds and limits

f(”; = ¢ for some constant 0 < ¢ < « then f(n) is ©(g(n)).

Proposition. If lim
n—oo g(n

Pf.
« By definition of the limit, for any & >0, there exists n, such that

< c+e

forall n = n,.
* Choose e =% c.
« Multiplying by g(n) yields 1/2¢- g(n) = f(n) < 3/2¢- g(n) forall n = n,.
* Thus, f(n) is O(g(n)) by definition, with c;=1/2cand c;=3/2¢c. =

Proposition. Ifn}i_>rrgo % = 0, then f(n) is O(g(n)) but not Q(g(n)).

Proposition. If lim f(n)) = 00, then f(n) is Q(g(n)) but not O(g(n)).

n—0o0 g(n

20 21

Asymptotic bounds for some common functions

Polynomials. Let f(n)=ay+a,n+ ... +a,n? with a, > 0. Then, f(n) is O(n9).

P.]
iy TN T

n—00 n

Logarithms. log,n is O(log,n) for every a >1 and every b > 1.
Pf. log,n 1
log,n ~ log,a

no need to specify base
(assuming it is a constant)

Logarithms and polynomials. log. nis O(n9) for every a >1 and every d > 0.

Pf. log,

lim

n—oo n

=0

Exponentials and polynomials. n? is O(r") for every r > 1 and every d >0.

Pf. nd

lim — =0
n—oo rn

Factorials. n!is 20@logn),
n
Pf. Stirling’s formula: n! ~ 2mn (ﬁ)
e

2. ALGORITHM ANALYSIS

» implementing Gale-Shapley

‘i limmnhm Jesig

JON KLEINBERG - EVA TARDOS

SECTION 2.3

22

Big O notation with multiple variables

Upper bounds. f(m,n) is O(g(m, n)) if there exist constants ¢ >0, m, = 0,
and ny= 0 such that f(m,n) < ¢+ g(m,n) forall n = nyand m = m,,.

Ex. f(m,n)=32mn2+ 17mn + 32n3.
* f(m,n) is both O(mn2 + n3) and O(mn3).

* f(m,n) is neither O(n3) nor O(mn2).

Typical usage. Breadth-first search takes O(m + n) time to find a shortest
path from s to z in a digraph with n nodes and m edges.

23

Efficient implementation

Goal. Implement Gale-Shapley to run in O(n2) time.

GALE-SHAPLEY (preference lists for n hospitals and n students)

INITIALIZE M to empty matching.
WHILE (some hospital / is unmatched)
s < first student on /s list to whom / has not yet proposed.
IF (s is unmatched)
Add h-s to matching M.
ELSE IF (s prefers A to current partner /')
Replace i'—s with hA—s in matching M.
ELSE

s rejects h.

RETURN stable matching M.

25

Efficient implementation

Goal. Implement Gale-Shapley to run in O(n2) time.

Representing hospitals and students. Index hospitals and students 1, ...,n.

Representing the matching.
* Maintain two arrays student[h] and hospital[s].
- if h matched to s, then student[h] = s and hospital[s] = h
- use value 0 to designate that hospital or student is unmatched
* Can add/remove a pair from matching in O(1) time.

» Maintain set of unmatched hospitals in a queue (or stack).
* Can find an unmatched hospital in O(1) time.

26

Data representation: accepting/rejecting a proposal

Student accepts/rejects a proposal.
* Does student s prefer hospital # to hospital /' ?
» For each student, create inverse of preference list of hospitals.

Ist 2nd 3rd 4th Gth gth 7th 8th

8 3 7 1 @ 5 @ 2 student prefers hospital 4 to 6

T since rank[4] < rank[6]

pref(]

1 2 3 4 5 6 7 8

4th 8th 2nd 6th 3rd st

for i =1 to n
rank[pref[i]] = i

rank[]

Bottom line. After ®(n2) preprocessing time (to create the n ranking arrays),
it takes O(1) time to accept/reject a proposal. "

Data representation: making a proposal

Hospital makes a proposal.
» Key operation: find hospital’s next favorite student.
» For each hospital: maintain a list of students, ordered by preference.
» For each hospital: maintain a pointer to student for next proposal.

next proposal to

|

hospital h 3 4

1 5 2 null

favorite least favorite

Bottom line. Making a proposal takes O(1) time.

Stable matching: summary

Theorem. Can implement Gale-Shapley to run in O(#?) time.

Pf.
* ©(n?) preprocessing time to create the n ranking arrays.
* There are O(n?) proposals; processing each proposal takes O(1) time. =

Theorem. In the worst case, any algorithm to find a stable matching must
query the hospital’s preference list Q(n2) times.

27

29

Problem set 1

Due at 11pm on Wednesday, 2/14.

Submit .tex and .pdf files via CS Dropbox.
Two files per problem.

Collaboration.

Must write solutions on your own.
Must write names of any collaborators in each file.

Solutions.

Solve the given problem (e.g., both directions of “if and only if”).
Define any notation you introduce.

Prove your assertions using mathematical rigor.

Describe proof technique (constructive, induction, contradiction, etc.)
Modularize your proofs (e.g., invariants, lemmas, etc.)
Counterexamples need proofs too!

Analyze worst-case running time of algorithm.

Constant time

Constant time. Running time is O(1).

bounded by a constant,

Examples. which does not depend on input size n

Conditional branch.

Arithmetic/logic operation.

Declare/initialize a variable.

Follow a link in a linked list.

Access element i in an array.
Compare/exchange two elements in an array.

30

32

2. ALGORITHM ANALYSIS

» survey of common running times

7\|gmithm Jesinn

JON KLEINBERG - EVA TARDOS

SECTION 2.4

Linear time

Linear time. Running time is O(n).

Merge two sorted lists. Combine two sorted linked lists A=aq,,qa,, ...,a,and
B=b,,b,,...,b, into a sorted whole.

O(n) algorithm. Merge in mergesort.

Merged result

i<1;j<1

WHILE (both lists are nonempty)
IF (ai < bj) append a; to output list and increment i.
ELSE append b; to output list and increment j.

Append remaining elements from nonempty list to output list.

33

TARGET SUM

TARGET-SuM. Given a sorted array of » distinct integers and an integer T,
find two that sum to exactly 7?

nPut 20 10 20 30 35 40 60 70 T =60

(sorted)
1 1

i J

SEARCH IN A SORTED ROTATED ARRAY

SEARCH-IN-SORTED-ROTATED-ARRAY. Given a rotated sorted array of » distinct
integers and an element x, determine if x is in the array.

SR
S &
Er

sorted circular array

sorted rotated array

80 85 90 95 20 30 35 50 60 65 67 75

1 2 3 4 5 6 7 8 9 10 11 12

34

37

Logarithmic time

Logarithmic time. Running time is O(log n).

Search in a sorted array. Given a sorted array A of n distinct integers and an
integer x, find index of x in array.

remaining elements

O(log n) algorithm. Binary search. /
* Invariant: If x is in the array, then x is in A[lo .. hi].
* After k iterations of WHILE loop, (hi—lo+1) < n/2x = k < 1+logn.

lo < 1;hi < n.

WHILE (lo < hi)
mid < |(lo + hi)/2].
IF (x < Almid]) hi < mid—1.
ELSE IF (x > A[mid]) lo < mid + 1.
ELSE RETURN mid.

RETURN —1.
36

Linearithmic time

Linearithmic time. Running time is O(n log n).

Sorting. Given an array of n elements, rearrange them in ascending order.

O(n log n) algorithm. Mergesort.

0 1 2 3 4 5
M ERGESORTENXAMPLE
E M

G R

(2]
~
o
o
=
o
=
[
=
N
=
w
=
S
=
wvi

>

m

m

—
=~ =m

o
4 =m
X X ©wr

39

LARGEST EMPTY INTERVAL

LARGEST-EMPTY-INTERVAL. Given n timestamps x,, ..., x, on which copies of a
file arrive at a server, what is largest interval when no copies of file arrive?

Cubic time

Cubic time. Running time is O#3).
3-Sum. Given an array of n distinct integers, find three that sum to 0.
O(m3) algorithm. Enumerate all triples (with i <j <k).
FOR i =1 TO n
FOR j =i+1 TO n
FOR k= j+1 TO n

IF (@i + aj+ ar= 0)

RETURN (a;, aj, ak).

Remark. Q(n3) seems inevitable, but O2) is not hard. [see next slide]

Quadratic time

Quadratic time. Running time is O(n?).

Closest pair of points. Given a list of n points in the plane (x;,y,), ..., (X, ¥,),
find the pair that is closest to each other.

O(n2) algorithm. Enumerate all pairs of points (with i <).

min < .
ForR i=1TON
FOR j=i+1TOn
d < (xi—x)% + (yi—yj)>.
IF (d < min)

min <d.

Remark. Q(n2) seems inevitable, but this is just an illusion. [see §5.4]

40 42

3-Sum. Given an array of n distinct integers, find three that sum to 0.

O3) algorithm. Try all triples.

O(n?) algorithm.

43 44

Polynomial time

Polynomial time. Running time is O(n) for some constant k > 0.

Independent set of size k. Given a graph, find k nodes such that no two
are joined by an edge. N

k is a constant

O(nt) algorithm. Enumerate all subsets of £ nodes.

FOREACH subset S of k nodes:
Check whether S is an independent set.
IF (S is an independent set)

RETURN S.

» Check whether S is an independent set of size k takes O(k2) time.
* Number of k-element subsets = (,l) nn=1(n=2)x--x(n—k+1) _ nk
© O(k2 nk | k1) = O(nk). k -

k(k—1)(k—2) x -~ x 1 il

poly-time for k=17,

but not practical &

Analysis of algorithms: quiz 4

Which is an equivalent definition of exponential time?

A 02

B. 0() for some constant ¢ > 0.

C. Both A and B.

D. Neither A nor B.

48

Exponential time

Exponential time. Running time is 0(2") for some constant k > 0.
Independent set. Given a graph, find independent set of max cardinality.

022" algorithm. Enumerate all subsets.

S* «— .
FOREACH subset S of nodes:
Check whether S is an independent set.
IF (S is an independent set and | S| > | $*|)
S* < S.

RETURN S*.

47

