1. Consider the following decision and optimization versions of the longest path problem:

- **LONGEST-PATH**: Given an undirected G with integer edge weights $w(e) \geq 1$ and an integer L, does there exist a simple path (no repeated nodes) whose length is $\geq L$?
- **FIND-LONGEST-PATH**: Given an undirected graph G with integer edge weights $w(e) \geq 1$, find a longest simple path.

Prove that FIND-LONGEST-PATH \equiv_p LONGEST-PATH.

2. Consider the following two related problems:

- **SUBSET-SUM**: Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W? A subset may contain each number at most once.
- **COIN-CHANGING**: Given m coin denominations $1 = c_1 < \ldots < c_m$ and an amount S, can you make change for the amount S using at most T coins? You may use as many coins of each coin denomination as desired.

(a) Prove that SUBSET-SUM \leq_p COIN-CHANGING.

Hint: as in the reduction from 3-Sat to SUBSET-SUM, use the individual digits of the COIN-CHANGING instance to impose any desired constraints (e.g., that you will take at most one coin of each denomination). Express the digits in base b for a value of b that is sufficiently large that there are no carries.

(b) Prove that COIN-CHANGING is NP-complete.

3. Design a linear-time algorithm for FIND-LONGEST-PATH (defined above) when G is a tree.