This problem set is due Wednesday, February 21 at 11pm via electronic submission. Collaboration is permitted, according to the rules specified in the syllabus.

Read Sections 4.1–4.3 in *Algorithm Design*. Recall that when you are asked to design an algorithm, you must (i) clearly describe the algorithm, (ii) rigorously prove that it is correct, and (iii) analyze its worst-case running time.

1. *(from Google’s foo.bar challenge)* Given an integer $n \geq 1$, your goal is to reduce it to 1 by applying some sequence of these three transformations:

 - *Add 1*: $n \leftarrow n + 1$
 - *Subtract 1*: $n \leftarrow n - 1$
 - *Divide by 2*: $n \leftarrow n \div 2$ (This transformation can be applied only if n is even.)

Design a greedy algorithm that solves the problem in a minimal number of transformations. For example if $n = 29$, one optimal solution is $29 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$; the other is $29 \rightarrow 30 \rightarrow 15 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$.

2. You have contracted to complete a set of n computational tasks on a custom-built Tensor Processor Unit (TPU). Unfortunately, your TPU was not working yesterday, so all n tasks are now late. You estimate that task j will take $p_j > 0$ minutes of TPU processing time to complete. Your contract states that you must pay a fine of $w_j > 0$ dollars per minute that task j is late. Design a greedy algorithm to schedule the n tasks on the TPU so as to minimize the sum of the fines.

 The TPU may work on at most one task at a time. Once the TPU starts processing a task, it must complete it before moving on to the next task (i.e., no preemption).

3. Problem 4.24 (zero-skew binary tree) in *Algorithm Design*.