This problem set is due Wednesday, February 21 at 11pm via electronic submission. Collaboration is permitted, according to the rules specified in the syllabus.

Read Sections 4.1–4.3 in Algorithm Design. Recall that when you are asked to design an algorithm, you must (i) clearly describe the algorithm, (ii) rigorously prove that it is correct, and (iii) analyze its worst-case running time.

1. (from Google’s foo.bar challenge) Given an integer $n \geq 1$, your goal is to reduce it to 1 by applying some sequence of these three transformations:

 - Add 1: $n \leftarrow n + 1$
 - Subtract 1: $n \leftarrow n - 1$
 - Divide by 2: $n \leftarrow n \div 2$ (This transformation can be applied only if n is even.)

 Design a greedy algorithm that solves the problem in a minimal number of transformations. For example if $n = 29$, one optimal solution is $29 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$; another is $29 \rightarrow 30 \rightarrow 15 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$.

2. You have contracted to complete a set of n computational tasks on a custom-built Tensor Processor Unit (TPU). Unfortunately, your TPU was not working yesterday, so all n tasks are now late. You estimate that task j will take $p_j > 0$ minutes of TPU processing time to complete. Your contract states that you must pay a fine of $w_j > 0$ dollars per minute that task j is late. Design a greedy algorithm to schedule the n tasks on the TPU so as to minimize the sum of the fines.

 The TPU may work on at most one task at a time. Once the TPU starts processing a task, it must complete it before moving on to the next task (i.e., no preemption).