Loop Preheaders

Recall:

- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.

- A loop is a single entry, multiple exit region.

Loop Preheaders:

- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.

- Create a loop preheader - a basic block before the loop header block.
Loop Preheader Example
Loop Invariant Computation

- Given statements in loop s: $t = a_1 \circ p \ a_2$:
 - s is loop-invariant if a_1, a_2 have same value each loop iteration.
 - may sometimes be possible to hoist s outside loop.

- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.

- d: $t = a_1 \circ p \ a_2$ is loop-invariant within loop L if for each a_i:
 1. a_i is constant, or
 2. all definitions of a_i that reach d are outside L, or
 3. only one definition of a_i reaches d, and is loop-invariant.
Loop Invariant Computation

Iterative algorithm for determining loop-invariant computations:

- mark "invariant" all definitions whose operands
- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
 mark "invariant" all definitions whose operands
 - are constant,
 - whose reaching definitions are outside loop, or
 - which have a single reaching definition in loop
 marked invariant.
Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

1: \(r1 = 0 \)

2: \(r2 = 5 \)

Preheader:

3: \(r3 = r3 + 1 \)

4: \(r1 = r2 + 10 \)

5: \(M[r3] = r1 \)

6: \(\text{branch } r3 < N \)

7: \(r4 = r1 \)

Subject to some constraints.
LICM: Constraint 1

\[
d: \ t = a \ \text{op} \ b
\]

\(d\) must dominate all loop exit nodes where \(t\) is live out.

1: \(r1 = 0\)

2: \(r2 = 5\)

Preheader:

3: \(\text{branch } r3 < N\)

4: \(r3 = r3 + 1\)

5: \(r1 = r2 + 10\)

6: \(M[r3] = r1\)

7: \(\text{jump}\)

8: \(r4 = r1\)
LICM: Constraint 2

\[d: t = a \text{ op } b \]

there must be only one definition of \(t \) inside loop.

1: \[r1 = 0 \]

2: \[r2 = 5 \]

Preheader:

3: \[r3 = r3 + 1 \]

4: \[r1 = r2 + 10 \]

5: \[M[r3] = r1 \]

6: \[r1 = 0 \]

7: \[M[r3] = r1' \]

8: \[\text{branch } r3 < N \]

9: \[\text{...} \]
d: $t = a \op b$

t must not be live-out of loop preheader node (live-in to loop)

1: $r1 = 0$

2: $r2 = 5$

Preheader:

3: $M[r3] = r1$

4: $r3 = r3 + 1$

5: $r1 = r2 + 10$

6: $M[r3] = r1$

7: Branch $r3 < N$

8: $r4 = r1$
Algorithm for code motion:

- Examine invariant statements of L in same order in which they were marked.
- If invariant statement s satisfies three criteria for code motion, remove s from L, and insert into preheader node of L.
Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

- i is an induction variable
- j is an induction variable

- $j = i * c$ is equivalent to
 $j = j + a * c$
- compute $e = a * c$ outside loop:
 $j = j + e \Rightarrow$ strength reduction
- may not need to use i in loop \Rightarrow induction variable elimination
Induction Variable Detection

Scan loop L for two classes of induction variables:

- **basic** induction variables - variables (i) whose only definitions within L are of the form $i = i + c$ or $i = i - c$, c is loop invariant.

- **derived** induction variables - variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j:

- i is basic induction variable; a and b are loop invariant.
- value of j at point of definition is $a + b * i$
- j belongs to the family of i
Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- **Scan statements of** L **for basic induction variables** i
 - for each i, associate triple $(i, 0, 1)$
 - i belongs to its own family.

- **Scan statements of** L **for derived induction variables** k:
 1. there must be single assignment to k within L of the form $k = j \times c$ or $k = j + d$, j is an induction variable; c, d loop-invariant, and
 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of j and definition of k

- Assume j associated with triple $(i, a, b): j = a + b \times i$ at point of definition.

- Can determine triple for k based on triple for j and instruction defining k:
 - $k = j \times c \rightarrow (i, a \times c, b \times c)$
 - $k = j + d \rightarrow (i, a + d, b)$
s = 0;
for(i = 0; i < N; i++)
 s += a[i];

1: r1 = 0
2: r2 = 0

Preheader:

3: branch r2 >= N

4: r3 = r2 * 4
5: r4 = r3 + a
6: r5 = M[r4]
7: r1 = r1 + r5
8: r2 = r2 + 1
9: jump
Strength Reduction

1. For each derived induction variable \(j \) with triple \((i, a, b)\), create new \(j' \).
 - all derived induction variables with same triple \((i, a, b)\) may share \(j' \)

2. After each definition of \(i \) in \(L, i = i + c \), insert statement:
 \[j' = j' + b \times c \]
 - \(b \times c \) is loop-invariant and may be computed in preheader or during compile time.

3. Replace unique assignment to \(j \) with \(j = j' \).

4. Initialize \(j' \) at end of preheader node:
 \[j' = b \times i \]
 \[j' = j' + a \]
 - Strength reduction still requires multiplication, but multiplication now performed outside loop.
 - \(j' \) also has triple \((i, a, b)\)
Strength Reduction Example

1: \(r1 = 0 \)

2: \(r2 = 0 \)

Preheader:

3: branch \(r2 \geq N \)

4: \(r3 = r2 \times 4 \)

5: \(r4 = r3 + a \)

6: \(r5 = M[r4] \)

7: \(r1 = r1 + r5 \)

8: \(r2 = r2 + 1 \)

9: jump
Strength Reduction Example

1: \[r1 = 0 \]

2: \[r2 = 0 \]

Preheader:

- \[r33 = r2 \times 4 \]
- \[r33 = r33 + 0 \]
- \[r44 = r2 \times 4 \]
- \[r44 = r44 + a \]

3: \[\text{branch } r2 >= N \]

10:

4: \[r3 = r33 \]

5: \[r4 = r44 \]

6: \[r5 = M[r4] \]

7: \[r1 = r1 + r5 \]

8: \[r2 = r2 + 1 \]

8': \[r33 = r33 + 4 \]

8'': \[r44 = r44 + 4 \]

9: \[\text{jump} \]
Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are *useless*
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.
Induction Variable Elimination Example

1: $r1 = 0$

2: $r2 = 0$

Preheader:

$r33 = 0$

$r44 = a$

3: branch $r2 \geq N$

5: $r4 = r44$

6: $r5 = M[r4]$

7: $r1 = r1 + r5$

8: $r2 = r2 + 1$

8': $r33 = r33 + 4$

8'': $r44 = r44 + 4$

9: jump
Induction Variable Elimination

- Variable k is *almost useless* if it is only used in comparisons with loop-invariant values, and there exists another induction variable $τ$ in the same family as k that is not useless.
- Replace k in comparison with $τ$
 $→ k$ is useless
Induction Variable Elimination: Example

1: \(r1 = 0 \)
2: \(r2 = 0 \)

Preheader:
\(r44 = a \)

3: branch \(r2 \geq N \)
5: \(r4 = r44 \)
6: \(r5 = M[r4] \)
7: \(r1 = r1 + r5 \)
8: \(r2 = r2 + 1 \)
9: jump
8*: \(r44 = r44 + 4 \)
10:
Induction Variable Elimination: Example

1: \(r1 = 0 \)

2: \(r2 = 0 \)

Preheader:

\[
\begin{align*}
 r44 &= a \\
 r100 &= 4 \cdot N \\
 r101 &= r100 + a
\end{align*}
\]

3: \(\text{branch } r44 \geq r101 \)

5: \(r4 = r44 \)

6: \(r5 = M[r4] \)

7: \(r1 = r1 + r5 \)

8: \(r2 = r2 + 1 \)

9: \(\text{jump} \)