Topic 11: Loops

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August



Loop Preheaders

Recall:
e A /oop 1s a set of CFG nodes S such that:

1. there exists a header node h 1n .S that dominates all nodes 1n .S.

— there exists a path of directed edges from / to any node in S.
— h 1s the only node 1in S with predecessors not in S.

2. from any node 1n 5, there exists a path of directed edges to h.
e A loop 1s a single entry, multiple exit region.
Loop Preheaders:

e Some loop optimizations (loop ivariant code removal) need to insert statements
immediately before loop header.

e Create a loop preheader - a basic block before the loop header block.



Loop Preheader Example




Loop Invariant Computation

e Given statements mn loop s: t = a; op as:

— s 1s loop-mnvariant 1t aq, as have same value each loop iteration.

— may sometimes be possible to hoist s outside loop.

e Cannot always tell whether a will have same value each iteration — conservative
approximartion.

e d:t = ay; op ayisloop-invariant within loop L 1f for each a;:

1. a; 1s constant, or
2. all definitions of «, that reach d are outside L, or

3. only one definition of a; reaches d, and 1s loop-invariant.



Loop Invariant Computation

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands

- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
mark "invariant" all definitions whose operands

- are constant,
- whose reaching definitions are outside loop, or

- which have a single reaching definition in loop
marked invariant.



Loop Invariant Code Maotion (LICM)

After detecting loop-1invariant computations, perform code motion.

l: rl=0
V
2: 2=2>5
V
Preheader:
oo
3: 3=r3+1
]
4: rl=r2+10
V |
5: M[r3] =rl |
d/ |
6: branch r3 <N
7 4=rl

Subject to some constraints.



LICM: Constraint 1

d:t = a op b
d must dominate all loop exit nodes where t 1s live out.

l: rl =0
2: 2=5
Preheader:
| = - "“‘\\
3: branch 3 <N

8: 4 =rl 4: B=r3+1

5 rl =12+ 10
6 M[r3] =rl
7: jump



LICM: Constraint 2

d:t = a op b
there must be only one definition of t inside loop.

l: r1=0
v
2: 2=>5
v
Preheader:
3: 3=r3+1 \
ll{ II'.
4: rl=12+10
v 'II
5 M[r3] =rl
v
[
6 ]_‘1\ — ,D |
¢ v II
7 M[r3] =1
\l/ |
8: branch 13 <N
9:




LICM: Constraint 3

d:t = a op b
t must not be live-out of loop preheader node (live-1n to loop)

1: r1=0

v
2: 2=5

¥

Preheader:

p——
3: M[r3] =1l

\v II'.
4 3=13+1 |

V |
5 rl=12+10

v |
6 M[r3] =11 |

W )
7: branch r3 <N
8: 4 =rl

¥



LICM

Algorithm for code motion:
e Examine invariant statements of L in same order in which they were marked.

e [f invariant statement s satisfies three criteria for code motion, remove s from L. and
msert into preheader node of L.



Induction Variables

Variable i i loop L 1s called induction variable of L if each time i changes value 1n L,
it 1s incremented/decremented by loop-invariant value.

Assume a, c loop-invariant.

e 1 1s an induction variable

\ e j 1s an induction variable
| —j = 1 * cisequivalent to
j =7 +a * c
/ —compute e = a * c outside loop:
j = j + e = strength reduction

— may not need to use i in loop = induction
variable elimination



Induction Variable Detection

Scan loop L for two classes of induction variables:

e hasic induction variables - variables (i) whose only definitions within L are of the
foormi = i + cori = i - c, cisloop nvariant.

e derived induction variables - variables (j) defined only once within L, whose value
1s linear function of some basic induction variable L.
: : , : woasic, : ,
Associate triple (1, a, b) with each induction variable j
e i 1s basic induction variable; a and b are loop invariant.
e value of j at point of definitionisa + b * i

e j belongs to the family of 1



Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

e Scan statements of L for basic induction variables i
— for each 1, associate triple (i, 0, 1) "X +0 =«
— 1 belongs to 1ts own famuly.

e Scan statements of L for dertved induction variables k:
1. there must be single assignment to k within L of the formk = j * cor

k = j + d,7j isaninduction variable; ¢, d loop-invariant, and

2. 1f j 1s a dertved induction variable belonging to the family of 1, then:

— the only definition of j that reaches k must be one in L, and
— no definition of i must occur on any path between definition of § and definition

of k
e Assume j associated with triple (1, a, b):j = a + b * 1 atpointof defi-
nition.
e Can determine triple for k based on triple for j and instruction defining k:
-k =3 * ¢c— (1, a*c, b*c)
-k =73 +d— (i, a + d, b)



Induction Variable Detection: Example

s = 0;
for(i = 0; 1 < N; 1++)
s += ali];
1 r1=0
¥
2 12=0
¥
Preheader:
¥
3:| branchr2 =N
¥
10: 4: 13=12%4
¥
5: 4=13+a
v
6: 15 = M[r4]
v
7 rl=rl+15
¥
8: 12=12+1
9: Jump




Strength Reduction

1. For each derived induction variable § with triple (i, a, Db), create new j’.
e all derived induction variables with same triple (i, a, b) may share j’

2. After each definttionofiin L, 1 = 1 + c, msert statement:
j’ = J'" + b * c

e b * c 1s loop-invariant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j with § = .
4. Initialize j* at end of preheader node:
i’ = b * i

it =3 +a

e Strength reduction still requires multiplication, but multiplication now performed
outside loop.

e j’ alsohas triple (1, a, b)



Strength Reduction Example

10:

I:

2:

Preheader:

(e

branch r2 >=N \

V

13=12%4

I

4=13+a

¥

1S = M[14]

I

rl=rl+15 ,

|

12=12+1

i

jump




Strength Reduction

Example

1 r1=0
T
2 12=0
\1,
Preheader: 133=12 %4
133=133+0
44 =12 %4
144 =144 +a
L
3:| branchr2>=N
l
10: -+ r3 =r33
il,'
5: r4 =144
11{
6: r5 = M][r4]
l
7 rl=rl +r5
-.1,
8 12=12+1
1
8 133=133+4
1
8 144 =144 + 4
\1{
9: jump




Induction Variable Elimination

After strength reduction has been performed:
e some 1nduction variables are only used in comparisons with loop-invariant values.
e some induction variables are useless

— dead on all loop exits, used only in definition of itself.

— dead code elimiation will not remove useless induction variables.



Induction Variable Elimination Example

1: r1=10
.1.-
2 2=0
]l'.
Preheader: 3320
44 =2
[
3: branch r2 >=N
_ ¥
10: 5 rd = r44
.1.-
6: 15 = M|[r4]
7 rl =11 +7r5
8 2=12+1
‘l'.
87 33=1r33+4
87| r44=r44+4
.l.-
9: jump




Induction Variable Elimination

e Variable k 1s a/most useless 1t 1t 1s only used in comparisons with loop-nvariant
values, and there exists another induction variable t in the same family as k that 1s
not useless.

e Replace k in comparison with t
— k 1s useless



Induction Variable Elimination: Example

1: 11=0
v

2: 2=0
v

Preheader:
44 =a

B

3: branch12 >= N
v

10: 5: 14 =144

v

6: 15 = M[r4]
v

7: rl =1l +15
v

8: 12=12+1
v

8" 44 =144 + 4

v

9: jump




Induction Variable Elimination: Example

l: r1=0
¥

2: 12=0
v

Preheader:
144 =a
rl00 =4 *N
r101 =1r100 + a

W .

3:| branch r44 >=r1101
v

10: 5: 4 =144

¥

6: 15 = M[r4]
v

7T: rl =11 +15
v

8: r2=12+1
¥

8 144 =144 + 4

v

9: jump




