Topic 11: Loops

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Loop Preheaders

Recall:

e A loop is a set of CFG nodes S such that:

1. there exists a header node h in S that dominates all nodes in S.

— there exists a path of directed edges from h to any node in S.
— h is the only node in S with predecessors not in .S.

2. from any node in .S, there exists a path of directed edges to h.

e A loop is a single entry, multiple exit region.
Loop Preheaders:

e Some loop optimizations (loop invariant code removal) need to insert statements

immediately before loop header.

e Create a loop preheader - a basic block before the loop header block.

Loop Preheader Example

Loop Invariant Computation

e Given statements in loop s: £ = a; op as:

— s 1s loop-invariant if @y, as have same value each loop iteration.

— may sometimes be possible to hoist s outside loop.

e Cannot always tell whether a will have same value each iteration — conservative
approximation.

ed:t = a; op ayisloop-invariant within loop L if for each «;:
1. a; 1s constant, or
2. all definitions of «; that reach d are outside L, or

3. only one definition of a; reaches d, and 1s loop-invariant.

Loop Invariant Computation

Tterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands
- are constant, or

- whose reaching definitions are outside loop.

WHILE (changes have occurred)

mark "invariant" all definitions whose operands
- are constant,

whose reaching definitions are outside loop, or

which have a single reaching definition in loop
marked invariant.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

Subject to some constraints.

LICM: Constraint 1

d:t = aopb
d must dominate all loop exit nodes where t is live out.
1: r1=0

LICM: Constraint 2

d:t = aopb
there must be only one definition of t inside loop.

Preheader:

4:
5:
6

/

/

LICM: Constraint 3

d:t = aopb
t must not be live-out of loop preheader node (live-in to loop)

7: branchr3 <N /"
e

LICM

Algorithm for code motion:
e Examine invariant statements of L in same order in which they were marked.

o If invariant statement s satisfies three criteria for code motion, remove s from L, and
msert into preheader node of L.

Induction Variables

Variable 1 inloop L is called induction variable of L if each time i changes value in L,
it is incremented/decremented by loop-invariant value.
Assume a, c loop-invariant.

e i is an induction variable

‘ - \Vi ‘\ e j is an induction variable
1=1+a \ . .
\V ‘ —-Jj = 1 * cisequvalent to
| j =3 +a*c
ok / .
‘]1=1 (? +d ‘ / —computee = a * c outside loop:
v o— — j = j + e = strength reduction

—may not need to use i in loop = induction
variable elimination

Induction Variable Detection

Scan loop L for two classes of induction variables:

e hasic induction variables - variables (1) whose only definitions within L are of the
foomi = i + cori = i - ¢, cisloop invariant.

e derived induction variables - variables (j) defined only once within L, whose value
is linear function of some basic induction variable L.

. . . (\)t.siq .
Associate triple (1, a, b) with each’induction variable j
e i is basic induction variable; a and b are loop invariant.

e value of j at point of definitionisa + b * 1

e j belongs to the family of 1

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:
e Scan statements of L for basic induction variables i
— for each 1, associate triple (1, 0, 1) A +0 =«
— 1 belongs to its own family.
e Scan statements of L for derived induction variables k:
1. there must be single assignment to k within L of the foomk = j * cor
k = j + 4, J isaninduction variable; ¢, d loop-invariant, and
2. if j is a derived induction variable belonging to the family of 1, then:
— the only definition of j that reaches k must be one in L, and
— no definition of 1 must occur on any path between definition of j and definition
ofk
e Assume j associated with triple (1, a, b):j = a + b * 1 atpointof defi-
nition.
e Can determine triple for k based on triple for j and instruction defining k:
-k =3 * ¢c— (1, a*c, b*c)
-k =3 +d— (i, a + d, b)

Induction Variable Detection: Example

s = 0;
for(i = 0; 1 < N; i++)
s += alil;
1:
2:
Preheader:
10: | 4 s=nx4]
8: R2=r2+1

Strength Reduction

1. For each derived induction variable j with triple (1, a, b), create new j’.
e all derived induction variables with same triple (1, a, b) may share j’

2. After each definitionof i in L, i = i + c, insert statement:
j" =3J" + b *c

eb * c is loop-invariant and may be computed in preheader or during compile
time.

3. Replace unique assignment to j with j = j’.

4. Initialize j* at end of preheader node:

= b * 1
j"=3" + a

o Strength reduction still requires multiplication, but multiplication now performed
outside loop.

o

e j’ also has triple (i, a,

Strength Reduction Example

1 r1=0

2. 2=0
Preheader:

3:| branchr2>=N \\

._
54
~

13=12%4

5: 4=13+a

6: 15 =M[14] ‘
rl=rl+15

8: n2=12+1

jump / /

hed

it

Strength Reduction Example

b

}

Preheader: 133=12%4

133 =133 +
r44=12%4

144=r144+a

3:| branchr2>=N

13 =133

=)
IS

w

14 =144
6: 15 =M[14]

7 rl=rl+r5

”

5

by
Il
t

IS

2=r2+1

=)

8 44 =144+ 4

b

jump

Induction Variable Elimination

After strength reduction has been performed:
e some induction variables are only used in comparisons with loop-invariant values.
e some induction variables are useless

— dead on all loop exits, used only in definition of itself.
— dead code elimination will not remove useless induction variables.

Induction Variable Elimination Example

Preheader

’ 44 =144 + 4
: |

Induction Variable Elimination

e Variable k is almost useless if it is only used in comparisons with loop-invariant
values, and there exists another induction variable t in the same family as k that 1s
not useless.

e Replace k in comparison with t
— k 1s useless

Induction Variable Elimination: Example

1
5
Preheader:
44=a
[—
3:| branchr2>=N |
10: | 5[r=ma

v
o[

o[amari]
o[wm]

Induction Variable Elimination: Example

1:
2

Preheader:

44=a

rl00=4*N
1101 =r100 +a

]
branch 144 >=r101

5

\ =144 \

6

8

8
9:

v

44 =144 + 4

