Topic 11: Loops

COS 320

Compiling Techniques

Princeton University Spring 2018

Prof. David August

Loop Preheader Example

Loop Preheaders

Recall:

- A *loop* is a set of CFG nodes S such that:
 - 1. there exists a *header* node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - -h is the only node in S with predecessors not in S.
 - 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.

Loop Preheaders:

- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.
- Create a loop *preheader* a basic block before the loop header block.

Loop Invariant Computation

- Given statements in loop s: $t = a_1$ op a_2 :
 - -s is loop-invariant if a_1 , a_2 have same value each loop iteration.
 - may sometimes be possible to hoist s outside loop.
- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.
- d: t = a_1 op a_2 is loop-invariant within loop L if for each a_i :
 - 1. a_i is constant, or
 - 2. all definitions of a_i that reach d are outside L, or
 - 3. only one definition of a_i reaches d, and is loop-invariant.

Loop Invariant Computation

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands

- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)

mark "invariant" all definitions whose operands

- are constant,
- whose reaching definitions are outside loop, or
- which have a single reaching definition in loop marked invariant.

LICM: Constraint 1

d: t = a op b

d must dominate all loop exit nodes where t is live out.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

Subject to some constraints.

LICM: Constraint 2

d: t = a op b

there must be only one definition of t inside loop.

LICM: Constraint 3

d: t = a op b

t must not be live-out of loop preheader node (live-in to loop)

Induction Variables

Variable i in loop L is called induction variable of L if each time i changes value in L, it is incremented/decremented by loop-invariant value.

Assume a, c loop-invariant. • i is an induction variable

- i = i + ai = i * c + d
- j is an induction variable
 - -j = i * c is equivalent to
 - j = j + a * c
 - compute e = a * c outside loop:
 - $j = j + e \Rightarrow$ strength reduction
 - may not need to use i in loop \Rightarrow induction variable elimination

LICM

Algorithm for code motion:

- Examine invariant statements of L in same order in which they were marked.
- If invariant statement s satisfies three criteria for code motion, remove s from L, and insert into preheader node of L.

Induction Variable Detection

Scan loop L for two classes of induction variables:

- basic induction variables variables (i) whose only definitions within L are of the form i = i + c or i = i - c, c is loop invariant.
- derived induction variables variables (j) defined only once within L, whose value is linear function of some basic induction variable L.

Associate triple (i, a, b) with each induction variable j

- i is basic induction variable; a and b are loop invariant.
- value of j at point of definition is a + b * i
- j belongs to the family of i

Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
 - for each i, associate triple (i, 0, 1) $l \cdot \dot{\lambda} + 0 = \dot{\lambda}$
 - i belongs to its own family.
- Scan statements of L for derived induction variables k:
 - 1. there must be single assignment to k within L of the form k = j * c or

- 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of k
- Assume j associated with triple (i, a, b): j = a + b * i at point of definition.
- Can determine triple for k based on triple for j and instruction defining k:

$$-k = j * c \rightarrow (i, a*c, b*c)$$

 $-k = j + d \rightarrow (i, a + d, b)$

Strength Reduction

- 1. For each derived induction variable j with triple (i, a, b), create new j'.
 - all derived induction variables with same triple (i, a, b) may share j'
- 2. After each definition of i in L, i = i + c, insert statement:

$$j' = j' + b * c$$

- b * c is loop-invariant and may be computed in preheader or during compile time.
- 3. Replace unique assignment to j with j = j'.
- 4. Initialize j' at end of preheader node:

$$j' = b * i$$

 $j' = j' + a$

- Strength reduction still requires multiplication, but multiplication now performed outside loop.
- j' also has triple (i, a, b)

Induction Variable Detection: Example

Strength Reduction Example

Strength Reduction Example

Induction Variable Elimination Example

Induction Variable Elimination

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are *useless*
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.

Induction Variable Elimination

- Variable k is almost useless if it is only used in comparisons with loop-invariant values, and there exists another induction variable t in the same family as k that is not useless.
- Replace k in comparison with t
 - \rightarrow k is useless

Induction Variable Elimination: Example

Induction Variable Elimination: Example

