Loop Preheaders

. Recall:
TOplC 1 1 - Loops e A loop is a set of CFG nodes S such that:

1. there exists a header node h in S that domiates all nodes 1n .S.

— there exists a path of directed edges from /A to any node in S.
COS 320 — Iy 1s the only node in S with predecessors not in S.

2. from any node in S, there exists a path of directed edges to /.

Com pl|lng TeChan ues e A loop is a single entry, multiple exit region.
Loop Preheaders:
e Some loop optimizations (loop invariant code removal) need to insert statements
Pri t Uni . immediately before loop header.
rince qn nlverSIty e Create a loop preheader - a basic block before the loop header block.
Spring 2018

Prof. David August

Loop Preheader Example Loop Invariant Computation

e Given statements in loop s: t = a; op a9

— s 1s loop-invariant if aq, as have same value each loop iteration.

— may sometimes be possible to hoist s outside loop.

e Cannot always tell whether ¢ will have same value each iteration — conservative
approximation.

ed:t = ay op asisloop-invariant within loop L if for each a;:
1. a; 1s constant, or
2. all definitions of «; that reach d are outside L, or

3. only one definition of «; reaches d, and is loop-invariant.

Loop Invariant Computation Loop Invariant Code Motion (LICM)

Iterative algorithm for determining loop-invariant computations: After detecting loop-invariant computations, perform code motion.

mark "invariant" all definitions whose operands 1:‘ =0 ‘
- are constant, or 5 z\b—'
- whose reaching definitions are outside loop. ‘ ! \vf} ‘
Preheader:‘ ‘
WHILE (changes have occurred) —
mark "invariant" all definitions whose operands g‘ r?:r{:l ‘\\\
- are constant, i \“‘x,
- whose reaching definitions are outside loop, or 4:‘ l=r2+10 ‘ ‘
- which have a single reaching definition in loop V ‘
marked invariant. i:‘ M[r3] =rl ‘ |
v
6:‘ branch 3 <N ‘)

7:‘ r4=rl ‘

Subject to some constraints.

LICM: Constraint 1 LICM: Constraint 2

d:t = aopb d:t = aopb
d must dominate all loop exit nodes where t is live out. there must be only one definition of t inside loop.
L: ‘ r1=0 ‘ 1. =0
v)
2: ‘ 22=3 ‘ :
\l/ Preheader:
Preheader: ‘ ‘
\ll T 3
\
3: branch 3<N ‘
8: r4=rl ‘ 4:‘ 3=r3+1 ‘ \ ‘
7 | |
s[r=ec0 | 6 |
¥ |
6| M]=r1 | ' -
v g[brmch<N |/
7 ’ Jjump ‘/ ——

LICM: Constraint 3

LICM

d:t = a opb
{ must not be live-out of loop preheader node (live-in to loop)

Induction Variables

Algorithm for code motion:
e Examine invariant statements of £, in same order in which they were marked.

o If invariant statement s satisfies three criteria for code motion, remove s from L, and
msert into preheader node of L.

Induction Variable Detection

Variable 1 in loop L is called induction variable of L if each time i changes value in L,

it is incremented/decremented by loop-invariant value.
Assume a, c loop-invariant.

e i is an induction variable

e j is an induction variable

i \ —Jj = 1 * cisequivalent to
| j =3 +a*c

—computee = a * c outside loop:
T j = j + e = strength reduction

—may not need to use i in loop = induction
variable elimination

Scan loop L for two classes of induction variables:

e hasic induction variables - variables (1) whose only definitions within L are of the
formi = 1 + cori = 1 - ¢, cisloop invariant.

e derived induction variables - variables (7) defined only once within L, whose value
1s linear function of some basic induction variable L.

. . . . (ZOG.S; L, . .
Associate triple (i, a, b) with each induction variable j
e 1 1is basic induction variable; a and b are loop invariant.

e value of j at point of definitionisa + b * 1

e j belongs to the family of 1

Induction Variable Detection: Algorithm Induction Variable Detection: Example

Algorithm for induction variable detection: s = 0;
e Scan statements of I for basic induction variables i for(i = 0; 1 < N; i++)
. , . . , - _ - s += alil;
— for each 1, associate triple (i, 0, 1) l"x+0 =«
. . ~ . 1:
— 1 belongs to its own family.
e Scan statements of I for derived induction variables k: *
1. there must be single assignment to k within L of the foomk = j * cor Freheader
k = j + d,j isan induction variable; ¢, d loop-invariant, and
2. if J is a derived induction variable belonging to the family of 1, then: 3:[brnchiz=N |
— the only definition of j that reaches k must be one in L, and o o[wme]
N el ~ e ~ N : : 13=12 %4
— no definition of 1 must occur on any path between definition of j and definition
of k hH 4=13+a
e Assume j associated with triple (1, a, b):j = a + b * 1 atpointof defi- 6 5=

nition. .
7. rl=rl+r5

e Can determine triple for k based on triple for and instruction defining k:

2]

12=r2+1
-k =3J * ¢c— (1, a*c, b*c)
-k =3 +d— (i, a + d, b)

o

L

jump

Strength Reduction Strength Reduction Example

1. For each derived induction variable j with triple (1, a, b), create new j’.

e all derived induction variables with same triple (1, a, b) may share j’

N .. ~ L. , , . Preheader:
2. After each definitionofi in L, i = i + c, insert statement:

i’ = 3" + b * c

eb * c is loop-invariant and may be computed in preheader or during compile 3
time. |
. , o , 10: 4| menca]
3. Replace unique assignment to j with j = j’. |

4. Initialize j* at end of preheader node: >
j* = b * 1 6: 5 = M[r4] ‘

i’ =3’ + a
J J 7 rl=rl+15 |

e Strength reduction still requires multiplication, but multiplication now performed

outside loop. 8: 2=12+1

=

Il

B =
/ }
/ =

e j’ also has triple (1, a, b) o Jup /".‘

Strength Reduction Example Induction Variable Elimination

v After strength reduction has been performed:
prehend ¥ e some induction variables are only used in comparisons with loop-invariant values.
reheader:

133=12%4

33213340 e some induction variables are useless

Haz2 e — dead on all loop exits, used only in definition of itself.

r44=r44 +a L. R . .) R
T — dead code elimination will not remove useless induction variables.
1

10: | 4] 13=133 |

Induction Variable Elimination Example Induction Variable Elimination

e Variable k is almost useless if it is only used in comparisons with loop-invariant
values, and there exists another induction variable t in the same family as k that is
Preheader: not useless.

e Replace k in comparison with t
t44=a — k 1s useless

) ~,

| r4 = r44 ‘

144 =144 + 4

Induction Variable Elimination: Example Induction Variable Elimination: Example

L 1:

2: 3

Preheader: Preheader:
44=a 44 =a

rlo0=4*N
rl01=r100+a

[} L
10: | 5| e] 10: EEE

i v

8: 8:

87| r4d=r44+4

87| rd4=r144+4
9: i

