Loop Preheaders

Recall:
- A loop is a set of CFG nodes S such that:
 1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
 2. from any node in S, there exists a path of directed edges to h.
- A loop is a single entry, multiple exit region.

Loop Preheaders:
- Some loop optimizations (loop invariant code removal) need to insert statements immediately before loop header.
- Create a loop preheader - a basic block before the loop header block.

Loop Invariant Computation

- Given statements in loop s: $t = a_1 \circ a_2$:
 - s is loop-invariant if a_1, a_2 have same value each loop iteration.
 - may sometimes be possible to hoist s outside loop.
- Cannot always tell whether a will have same value each iteration \rightarrow conservative approximation.
- d: $t = a_1 \circ a_2$ is loop-invariant within loop L if for each a_i:
 1. a_i is constant, or
 2. all definitions of a_i that reach d are outside L, or
 3. only one definition of a_i reaches d, and is loop-invariant.
Loop Invariant Computation

Iterative algorithm for determining loop-invariant computations:

mark "invariant" all definitions whose operands
- are constant, or
- whose reaching definitions are outside loop.

WHILE (changes have occurred)
 mark "invariant" all definitions whose operands
 - are constant,
 - whose reaching definitions are outside loop, or
 - which have a single reaching definition in loop
 marked invariant.

Loop Invariant Code Motion (LICM)

After detecting loop-invariant computations, perform code motion.

LICM: Constraint 1

\(d : t = a \ op \ b \)
\(d \) must dominate all loop exit nodes where \(t \) is live out.

LICM: Constraint 2

\(d : t = a \ op \ b \)
there must be only one definition of \(t \) inside loop.
LICM: Constraint 3

\[d: t = a \text{ op } b \]

\(t \) must not be live-out of loop preheader node (live-in to loop)

1: \[r1 = 0 \]
2: \[r2 = 5 \]

Preheader:

3: \[M[r3] = r1 \]
4: \[r3 = r3 + 1 \]
5: \[r1 = r2 + 10 \]
6: \[M[r3] = r1 \]
7: \[\text{branch } r3 < N \]
8: \[r4 = r1 \]

Induction Variables

Variable \(i \) in loop \(L \) is called induction variable of \(L \) if each time \(i \) changes value in \(L \), it is incremented/decremented by loop-invariant value.

Assume \(a, c \) loop-invariant.

- \(i \) is an induction variable
- \(j \) is an induction variable
- \(j = i \times c \) is equivalent to
 - \(j = j + a \times c \)
- Compute \(e = a \times c \) outside loop:
 - \(j = j + e \Rightarrow \) strength reduction
 - may not need to use \(i \) in loop \(\Rightarrow \) induction variable elimination

LICM

Algorithm for code motion:

- Examine invariant statements of \(L \) in same order in which they were marked.
- If invariant statement \(s \) satisfies three criteria for code motion, remove \(s \) from \(L \), and insert into preheader node of \(L \).

Induction Variable Detection

Scan loop \(L \) for two classes of induction variables:

- **basic** induction variables - variables \(i \) whose only definitions within \(L \) are of the form \(i = i + c \) or \(i = i - c, c \) is loop invariant.
- **derived** induction variables - variables \(j \) defined only once within \(L \), whose value is linear function of some basic induction variable \(i \).

Associate triple \((i, a, b) \) with each induction variable \(j \)

- \(i \) is basic induction variable; \(a \) and \(b \) are loop invariant.
- Value of \(j \) at point of definition is \(a + b \times i \)
- \(j \) belongs to the family of \(i \).
Induction Variable Detection: Algorithm

Algorithm for induction variable detection:

- Scan statements of L for basic induction variables i
 - for each i, associate triple $(i, 0, 1)$
 - i belongs to its own family.
- Scan statements of L for derived induction variables k:
 1. there must be single assignment to k within L of the form $k = j \times c$ or $k = j + d$, j is an induction variable; c, d loop-invariant, and
 2. if j is a derived induction variable belonging to the family of i, then:
 - the only definition of j that reaches k must be one in L, and
 - no definition of i must occur on any path between definition of j and definition of k
- Assume j associated with triple $(i, a, b): j = a + b \times i$ at point of definition.
- Can determine triple for k based on triple for j and instruction defining k:
 - $k = j \times c \rightarrow (i, a*c, b*c)$
 - $k = j + d \rightarrow (i, a+d, b)$

Strength Reduction

1. For each derived induction variable j with triple (i, a, b), create new j'.
 - all derived induction variables with same triple (i, a, b) may share j'
2. After each definition of i in L, $i = i + c$, insert statement:
 $j' = j' + b \times c$
 - $b \times c$ is loop-invariant and may be computed in preheader or during compile time.
3. Replace unique assignment to j with $j = j'$.
4. Initialize j' at end of preheader:
 $j' = b \times i$
 $j' = j' + a$
 - Strength reduction still requires multiplication, but multiplication now performed outside loop.
 - j' also has triple (i, a, b)

Induction Variable Detection: Example

```plaintext
$s = 0;
for(i = 0; i < N; i++)
   s += a[i];
```

Strength Reduction Example

```plaintext
1: r1 = 0
2: r2 = 0
3: branch r2 := N
4: r3 = r2 + 4
5: r4 = r3 + a
6: r5 = M[r4]
7: r1 = r1 + r5
8: r2 = r2 + 1
9: jump
```
Strength Reduction Example

After strength reduction has been performed:

- some induction variables are only used in comparisons with loop-invariant values.
- some induction variables are useless
 - dead on all loop exits, used only in definition of itself.
 - dead code elimination will not remove useless induction variables.

Induction Variable Elimination Example

- Variable κ is *almost useless* if it is only used in comparisons with loop-invariant values, and there exists another induction variable τ in the same family as κ that is not useless.
- Replace κ in comparison with τ
 \rightarrow κ is useless