Topic 10: Dataflow Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August
Analysis and Transformation

- Analysis:
 - Control Flow Analysis
 - Dataflow Analysis
- Transformation:
 - Register Allocation
 - Optimization
 * Machine dependent/independent
 * Local/Global/Interprocedural
 * Acyclic/Cyclic
 - Scheduling
Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

\[r_1 = 4 \]

\[r_2 = r_1 + 5 \]

\[r_2 = 9 \]

Needs dominator, liveness, and reaching definition information.
Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
- Pseudo-assembly must be examined by live variable analysis to determine which virtual registers contain values which may be used later.
- Virtual registers which are not simultaneously live may be mapped onto the same real register.

1\[r2 = r1 + 1\]

2\[r3 = M[r2]\]

3\[r4 = r3 + 4\]

4\[LOAD \quad r5 = M[r2 + r4]\]
Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination

- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation

- Available expressions
 - Common subexpression elimination
Iterative Dataflow Analysis Framework

- These dataflow analyses are all very similar → define a framework.
- Specify:
 - Two set definitions - $A[n]$ and $B[n]$
 - A transfer function - $f(A, B, IN/OUT)$
 - A confluence operator - \lor.
 - A direction - FORWARD or REVERSE.
- For forward analyses:
 \[IN[n] = \lor_{p \in PRED[n]} OUT[p] \]
 \[OUT[n] = f(A, B, IN) \]
- For reverse analyses:
 \[OUT[n] = \lor_{s \in SUCC[n]} IN[s] \]
 \[IN[n] = f(A, B, OUT) \]
Control Flow Definitions:

- CFG node has *out-edges* leading to *successor nodes*.
- CFG node has *in-edges* coming from *predecessor nodes*.
- For each CFG node n, $PRED[n] = \text{set of all predecessors of } n$.
- For each CFG node n, $SUCC[n] = \text{set of all successors of } n$.
Iterative Dataflow Analysis Framework

- Iterative dataflow analysis equations are applied in an iterative fashion until \(IN \) and \(OUT \) sets do not change.

- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.

- \(IN \) and \(OUT \) sets initialized to \(\emptyset \).

For each node \(n \) {
 \[\text{IN}[n] = \text{OUT}[n] = \{\} \];
}

Repeat {
 For each node \(n \) in forward/reverse topological order {
 \[\text{IN'}[n] = \text{IN}[n] \];
 \[\text{OUT'}[n] = \text{OUT}[n] \];
 \[\text{IN}[n], \text{OUT}[n] = (\text{Equations}) \];
 }
} until \(\text{IN'}[n] = \text{IN}[n] \) and \(\text{OUT'}[n] = \text{OUT}[n] \) for all \(n \).
Definitions for Liveness Analysis

Liveness Definitions:

- A source (RHS) register t is a *use* of t.
- A destination (LHS) register t is a *definition* of t.
- A register t is *live* on edge e if there exists a path from e to a use of t that does not go through a definition of t.
- Register t is *live-in* at CFG node n if t is live on any in-edge of n.
- Register t is *live-out* at CFG node n if t is live on any out-edge of n.
Definitions for Liveness Analysis

Live Variable Analysis Equation:

- Set definition ($B[n]$): $DEF[n]$ - the set of registers that n defines.
- Transfer function ($f(A, B, OUT)$): $USE[n] \cup (OUT[n] - DEF[n])$
- Confluence operator (\cup): \cup
- Direction: REVERSE

\[
OUT[n] = \bigcup_{s \in SUCC[n]} IN[s]
\]
\[
IN[n] = USE[n] \cup (OUT[n] - DEF[n])
\]
Live Variable Analysis Example

1: r1 = 0

2: r2 = r1 + 1

3: r3 = r3 + r2

4: r1 = r2 * 2

5: branch r1 < 10, L1

6: return r3

<table>
<thead>
<tr>
<th>Node</th>
<th>USE</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Register Allocation:

1. Perform live variable analysis.
2. Build *interference graph*.
3. Color interference graph with real registers.
Interference Graph

- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, \ldots b_k\}$, then add interference edges: $\langle a, b_1 \rangle, \langle a, b_2 \rangle, \langle a, b_k \rangle$

Interference Graph For Example:

<table>
<thead>
<tr>
<th>Node</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r1</td>
<td>r1,r3</td>
<td>r3</td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>r2,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>3</td>
<td>r3</td>
<td>r2,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td>r1,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>r1,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>r3</td>
<td></td>
</tr>
</tbody>
</table>

Virtual registers r1 and r2 may be mapped to same real registers.
Live Variable Application 2: Dead Code Elimination

- Given statement \(s \) with a definition and no side-effects:
 \[r_1 = r_2 + r_3, \quad r_1 = M[r_2], \quad \text{or} \quad r_1 = r_2 \]
 If \(r_1 \) is not live at the end of \(s \), then the \(s \) is dead.

- Dead statements can be deleted.

- Given statement \(s \) without a definition or side-effects:
 \[r_1 = \text{call FUN_NAME}, \quad M[r_1] = r_2 \]
 Even if \(r_1 \) is not live at the end of \(s \), it is not dead.

Example:

\[
\begin{align*}
 r_1 &= r_2 + 1 \\
 r_2 &= r_2 + 2 \\
 r_1 &= r_2 + 3 \\
 M[r_1] &= r_2
\end{align*}
\]
Reaching Definition Analysis

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- **unambiguous** - instruction explicitly defines register t.
- **ambiguous** - instruction may or may not define register t.
 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.
- Definition of d (of t) *reaches* statement u if a path of CFG edges exists from d to u that does not pass through an unambiguous definition of t.
- One unambiguous and many ambiguous definitions of t may reach u on a single path.
Reaching Definition Analysis Equation:

- Set definition \((A[n])\): \(GEN[n]\) - the set of definition id's that \(n\) creates.
- Set definition \((B[n])\): \(KILL[n]\) - the set of definition id's that \(n\) kills.

 \(-defs(t)\) - set of all definition id's of register \(t\).
- Transfer function \((f(A, B, IN))\): \(GEN[n] \cup (IN[n] - KILL[n])\)
- Confluence operator \((\lor)\): \(\lor\)
- Direction: FORWARD

\[
IN[n] = \bigcup_{p \in PRED[n]} OUT[p] \\
OUT[n] = GEN[n] \cup (IN[n] - KILL[n])
\]
Reaching Definition Analysis Example

<table>
<thead>
<tr>
<th>Node</th>
<th>(GEN)</th>
<th>(KILL)</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \(r1 = 5 \)
2: \(r3 = 1 \)
3: Branch \(r3 > r1, 6: \)
4: \(r3 = r3 + 1 \)
5: Goto 3

6: \(r4 = 10 \)
7: \(r1 = r1 + r4 \)
8: \(M[r3] = r1 \)
Reaching Definition Application 1: Constant Propagation

- Given Statement d: $a = c$ where a is constant
- Given Statement u: $t = a \ op \ b$
- If statement d reach u and no other definition of a reaches u, then replace $u b c \ op \ b$.

Statements 1 and 6 are dead.
Constant Folding

- Given Statement $d: t = a \op b$
- If a and b are constant, compute c as $a \op b$, replace d by $t = c$

```plaintext
7:   r1 = 5 + 10
8:   M[r3] = r1

2:   r3 = 1

3:   branch r3 > 5, 6:

4:   r3 = r3 + 1

5:   goto 3:
```
If \(x \circ y \) is computed multiple times, *common subexpression elimination* (CSE) attempts to eliminate some of the duplicate computations.

1: \[r1 = M[A] \]
2: \[r2 = r1 + 10 \]
3: \[r3 = M[A] \]
4: \[r4 = r3 + 1 \]
5: \[r5 = r4 + r2 \]

Need to track expression propagation \(\rightarrow \) available expression analysis
Definitions

- Expression $x \: \text{op} \: y$ is available at CFG node n if, on every path from CFG entry node to n, $x \: \text{op} \: y$ is computed at least once, and neither x nor y are defined since last occurrence of $x \: \text{op} \: y$ on path.

- Can compute set of expressions available at each statement using system of dataflow equations.

- Statement $r_1 = M[r_2]$:
 - *generates* expression $M[r_2]$.
 - *kills* all expressions containing r_1.

- Statement $r_1 = r_2 + r_3$:
 - *generates* expression $r_2 + r_3$.
 - *kills* all expressions containing r_1.
Iterative Dataflow Analysis Framework

- Specify:
 - Two set definitions - $A[n]$ and $B[n]$
 - A transfer function - $f(A, B, IN/OUT)$
 - A confluence operator - \lor.
 - A direction - FORWARD or REVERSE.

- For forward analyses:

 $$IN[n] = \lor_{p \in PRED[n]} OUT[p]$$
 $$OUT[n] = f(A, B)$$

- For reverse analyses:

 $$OUT[n] = \lor_{s \in SUCC[n]} IN[s]$$
 $$IN[n] = f(A, B)$$
Available Expression Analysis:

- $exp(t)$ - set of all expressions containing t.
- Set definition $(A[n])$: $GEN[n]$ - the set of all expressions generated by n.
- Set definition $(B[n])$: $KILL[n]$ - the set of all expressions that n kills - $exp(n)$.
- Transfer function $(f(A, B, IN/OUT))$: $GEN[n] \cup (IN[n] - KILL[n])$
- Confluence operator (\lor): \cap
 - Use of \cup, required initialization of IN and OUT sets to \emptyset.
 - Use of \cap, requires initialization of IN and OUT sets to U (except for IN of entry node).
- Direction: FORWARD

$$IN[n] = \cap_{p \in PRED[n]} OUT[p]$$

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$
Example

<table>
<thead>
<tr>
<th>Node</th>
<th>GEN</th>
<th>KILL</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M[A]</td>
<td>r1+r2, r1+12, r3+r1</td>
<td>-</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>M[B]</td>
<td>r1+r2</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>r1+r2</td>
<td>r3+r1</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>r3+r1</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r1+r2</td>
<td>r1+r2, r3+r1, r1+12</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td>r1+r2</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td>r1+r2</td>
<td>M[r5]</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>M[A], M[B], M[r5]</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>GEN</th>
<th>KILL</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>378, 6, 4</td>
<td>-</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>378</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>378</td>
<td>4</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>378</td>
<td>378, 4, 6</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td>378</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td>378</td>
<td>9</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>1, 2, 9</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>
Example

1: \[r1 = M[A] \]
2: \[r2 = M[B] \]
3: \[r3 = r1 + r2 \]
4: \[r4 = r3 + r1 \]
5: \[\text{branch } r3 > r2 \]
6: \[r1 = r1 + 12 \]
7: \[r4 = r1 + r2 \]
8: \[r5 = r1 + r2 \]
9: \[M[r5] = r4 \]

<table>
<thead>
<tr>
<th>Node</th>
<th>GEN</th>
<th>KILL</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>378, 4, 6</td>
<td>-</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>378</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>378</td>
<td>4</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>378, 4, 6</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>378</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>9</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>378</td>
<td>1, 2, 9</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node</th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Subexpression Elimination (CSE)

Given statement s: $t = x \ op \ y$

If expression $x \ op \ y$ is available at beginning of node s then:

1. starting from node s, traverse CFG edges backwards to find last occurrence of $x \ op \ y$ on each path from entry node to s.

2. create new temporary w.

3. for each statement s': $v = x \ op \ y$ found in (1), replace s' by:

 $w = x \ op \ y$
 $v = w$

4. replace statement s by: $t = w$
CSE Example

r1 = M[A]

r2 = M[B]

r3 = r1 + r2

r4 = r3 + r1

branch r3 > r2

r1 = r1 + 12

r4 = r1 + r2

r5 = r1 + r2

M[r5] = r4

r1 + r2 in node 8 is a common subexpression.
Copy Propagation

- Given statement \(d: a = z \) (\(a \) and \(z \) are both register temps) \(\rightarrow \) \(d \) is a copy statement.
- Given statement \(u: t = a \ op \ b. \)
- If \(d \) reaches \(u \), no other definition of \(a \) reaches \(u \), and no definition of \(z \) exists on any path from \(d \) to \(u \), then replace \(u \) by: \(t = z \ op \ b. \)
Sets

- Sets have been used in all the dataflow and control flow analyses presented.
- There are at least 3 representations which can be used:
 - Bit-Arrays:
 - Each \textit{potential} member is stored in a bit of some array.
 - Insertion, Member is $O(1)$.
 - Assuming set size of N and word size of W - Union (OR) and Intersection (AND) is $O(N/W)$.
 - Sorted Lists/Trees:
 - Each member is stored in a list element.
 - Insertion, Member, Union, Intersection is $O(size)$. (Insertion, Member is $O(\log_2 size)$ in trees.)
 - Better for sparse sets than bit-arrays.
 - Hybrids: - Trees with bit-arrays
 - Use Tree to hold elements containing bit-arrays.
 - Union, Intersection is $O(size/W)$. Insertion, Member is $O(\log_2 size/W)$.
To improve performance of dataflow, process at basic block level.

- Represent the entire basic block by a single *super-instruction* which has any number of destinations and sources.
- Run dataflow at basic block level.
- Expand result to the instruction level.

Example:

\[
\begin{align*}
p &: r_1 &= r_2 + r_3 \\ n &: r_2 &= r_1
\end{align*}
\]
Basic Block Level Analysis

- Example:

 \[p: \ r_1 = r_2 + r_3 \quad \rightarrow \quad r_1, r_2 = r_2, r_3 \]
 \[n: \ r_2 = r_1 \]

- For reaching definitions:

 \[OUT[n] = GEN[n] \cup (IN[n] - KILL[n]) \]

 But \(IN[n] = OUT[p] \):

 \[OUT[n] = GEN[n] \cup ((GEN[p] \cup (IN[p] - KILL[p])) - KILL[n]) \]

 Which (clearly) yields:

 \[OUT[n] = GEN[n] \cup (GEN[p] - KILL[n]) \cup (IN[p] - (KILL[p] \cup KILL[n])) \]

 So:

 \[GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n]) \]
 \[KILL[pn] = KILL[p] \cup KILL[n] \]

- Can we do this at the loop or general region level?
Reducible Flow Graphs Revisited

Definition

- A flow graph is reducible iff each edge exists in exactly one class:
 1. Forward edges (forms an acyclic graph where every node is reachable from start node)
 2. Back edges (head dominates tail)

Algorithm:

1. Remove all backedges
2. Check for cycles:
 - Cycles: Irreducible.
 - No Cycles: Reducible.

Think:

- All loop entry arcs point to header.
Motivation:

- Structured programs are always reducible programs.
- Reducible programs are not always structured programs.
- Exploit the structured or reducible property in dataflow analysis.

Structures:

- Lists of instructions
- Conditionals/Hammocks
- While Loops (no breaks)

Method:

- Represent structures by a single *super-instruction* which has any number of destinations and sources.
- Run dataflow at structure level.
- Expand result to the instruction level.
Structured Program Analysis

- Lists of instructions - Basic Blocks!

\[\text{GEN}[pn] = \text{GEN}[n] \cup (\text{GEN}[p] - \text{KILL}[n]) \]
\[\text{KILL}[pn] = \text{KILL}[p] \cup \text{KILL}[n] \]

- Conditionals/Hammocks

\[\text{GEN}[lr] = \text{GEN}[l] \cup \text{GEN}[r] \]
\[\text{KILL}[lr] = \text{KILL}[l] \cap \text{KILL}[r] \]

- While Loops

\[\text{GEN}[loop] = \text{GEN}[l] \]
\[\text{KILL}[loop] = \text{KILL}[l] \]

Try this on an irreducible flow graph...
Register Allocation:

0: \(r1 = 1 \)

1: \(\text{branch ???} \)

2: \(r1 = r1 + 1 \)

3: \(\text{branch } r1 < 3 \)

4: \(\text{branch } r1 < 5 \) \(\text{TAKE/TRUE} \)

5: \(= r1 \) \(\text{TAKE/TRUE} \)

6: \(= r2 \)
New Dataflow Analysis

0: \(r1 = 1 \)

1: branch ???

2: \(r1 = r1 + 1 \)

3: branch \(r1 < 3 \)

4: branch \(r1 < 5 \)

5: \(= r1 \)

6: \(= r2 \)
Limitation of Dataflow Analysis

1: \(r1 = r2 \times r2 \)

2: \(r3 = r1 + r2 \)

3: \(\text{branch } r3 \geq r2 \)

4: \(= r1 \)

5: \(= r3 \)