Topic 10: Dataflow Analysis

COS 320

Compiling Techniques

Princeton University Spring 2018

Prof. David August

Analysis and Transformation

- Analysis:
 - Control Flow Analysis
 - Dataflow Analysis
- Transformation:
 - Register Allocation
 - Optimization
 - * Machine dependent/independent
 - * Local/Global/Interprocedural
 - * Acyclic/Cyclic
 - Scheduling

Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

Needs dominator, liveness, and reaching definition information.

1

Dataflow Analysis Motivation

Register Allocation:

- Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
- Pseudo-assembly must be examined by *live variable analysis* to determine which virtual registers contain values which may be used later.
- Virtual registers which are not simultaneously *live* may be mapped onto the same real register.

```
1 r2 = r1 + 1
2 r3 = M[r2]
3 r4 = r3 + 4
4 LOAD r5 = M[r2 + r4]
```

Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination
- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation
- Available expressions
 - Common subexpression elimination

Iterative Dataflow Analysis Framework

- ullet These dataflow analyses are all very similar o define a framework.
- Specify:
 - Two set definitions A[n] and B[n]
 - A transfer function f(A, B, IN/OUT)
 - A confluence operator \vee .
 - A direction FORWARD or REVERSE.
- For forward analyses:

$$IN[n] = \bigvee_{p \in PRED[n]} OUT[p]$$

 $OUT[n] = f(A, B, IN)$

• For reverse analyses:

$$OUT[n] = \vee_{s \in SUCC[n]} IN[s]$$

$$IN[n] = f(A, B, OUT)$$

Control Flow Definitions:

- CFG node has *out-edges* leading to *successor nodes*.
- CFG node has *in-edges* coming from *predecessor nodes*.
- For each CFG node n, PRED[n] = set of all predecessors of n.
- For each CFG node n, SUCC[n] = set of all successors of n.

Iterative Dataflow Analysis Framework

- \bullet Iterative dataflow analysis equations are applied in an iterative fashion until IN and OUT sets do not change.
- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.
- IN and OUT sets initialized to \emptyset .

```
For each node n {
    IN[n] = OUT[n] = {};
}
Repeat {
    For each node n in forward/reverse topological order {
        IN'[n] = IN[n];
        OUT'[n] = OUT[n];
        IN[n], OUT[n] = (Equations);
    }
} until IN'[n] = IN[n] and OUT'[n] = OUT[n] for all n.
```

Definitions for Liveness Analysis

Liveness Definitions:

- A source (RHS) register t is a *use* of t.
- ullet A destination (LHS) register t is a definition of t.
- A register t is live on edge e if there exists a path from e to a use of t that does not
 go through a definition of t.
- Register t is *live-in* at CFG node n if t is live on any in-edge of n.
- ullet Register t is live-out at CFG node n if t is live on any out-edge of n.

Definitions for Liveness Analysis

Live Variable Analysis Equation:

• Set definition (A[n]): USE[n] - the set of registers that n uses.

• Set definition (B[n]): DEF[n] - the set of registers that n defines.

• Transfer function (f(A, B, OUT)): $USE[n] \cup (OUT[n] - DEF[n])$

• Confluence operator (\lor): \cup

• Direction: REVERSE

$$OUT[n] = \cup_{s \in SUCC[n]} IN[s]$$

$$IN[n] = USE[n] \cup (OUT[n] - DEF[n])$$

Live Variable Analysis Example

Node	USE	DEF	OUT	IN	OUT	IN	OUT	IN	
1									
2									
3									
4									
5									
6									

Live Variable Application 1: Register Allocation

Register Allocation:

- 1. Perform live variable analysis.
- 2. Build interference graph.
- 3. Color interference graph with real registers.

Interference Graph

- \bullet Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, ...b_k\}$, then add interference edges: $\langle a, b_1 \rangle$, $\langle a, b_2 \rangle$, $\langle a, b_k \rangle$

Interference Graph For Example:

Node	DEF	OUT	IN
1	r1	r1,r3	r3
2	r2	r2,r3	r1,r3
3	r3	r2,r3	r2,r3
4	r1	r1,r3	r2,r3
5	-	r1, r3	r1,r3
6	-		r3

Virtual registers r1 and r2 may be mapped to same real registers.

Live Variable Application 2:

Dead Code Elimination

• Given statement s with a definition and no side-effects:

$$r1 = r2 + r3$$
, $r1 = M[r2]$, or $r1 = r2$

If r1 is not live at the end of s, then the s is dead

- Dead statements can be deleted.
- Given statement s without a definition or side-effects:

$$r1 = call FUN NAME, M[r1] = r2$$

Even if r1 is not live at the end of s, it is not dead.

Example:

$$r1 = r2 + 1$$

 $r2 = r2 + 2$
 $r1 = r2 + 3$
 $M[r1] = r2$

Reaching Definition Analysis

Determines whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- \bullet unambiguous instruction explicitly defines register t.
- ullet ambiguous instruction may or may not define register t.
 - Global variables in a function call.
 - No ambiguous definitions in tiger since all globals are stored in memory.
- Definition of d (of t) reaches statement u if a path of CFG edges exists from d to u
 that does not pass through an unambiguous definition of t.
- One unambiguous and many ambiguous definitions of t may reach u on a single path.

Reaching Definition Analysis

Reaching Definition Analysis Equation:

• Set definition (A[n]): GEN[n] - the set of definition id's that n creates.

• Set definition (B[n]): KILL[n] - the set of definition id's that n kills.

 $-\operatorname{defs}(t)$ - set of all definition id's of register t.

• Transfer function (f(A, B, IN)): $GEN[n] \cup (IN[n] - KILL[n])$

Confluence operator (∨): ∪

• Direction: FORWARD

$$IN[n] = \cup_{p \in PRED[n]} OUT[p]$$

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

Reaching Definition Analysis Example

Node	GEN	KILL	IN	OUT	IN	OUT	IN	OUT
1								
2								
3								
4								
5								
6								
7								
8								

Reaching Definition Application 1: Constant Propagation

- Given Statement d: a = c where a is constant
- Given Statement u: t = a op b
- If statement d reach u and no other definition of a reaches u, then replace u by c op b.

Constant Folding

- Given Statement d: t = a op b
- If a and b are constant, compute c as a op b, replace d by t = c

Common Subexpression Elimination

If $x \circ p$ y is computed multiple times, *common subexpression elimination* (CSE) attempts to eliminate some of the duplicate computations.

1:
$$r1 = M[A]$$
 v
2: $r2 = r1 + 10$
 v
3: $r3 = M[A]$
 v
4: v
5: v
 v
 v
 v

Need to track expression propagation → available expression analysis

Definitions

- Expression x op y is available at CFG node n if, on every path from CFG entry node to n, x op y is computed at least once, and neither x nor y are defined since last occurrence of x op y on path.
- Can compute set of expressions available at each statement using system of dataflow equations.
- Statement r1 = M[r2]:
 - generates expression M[r2].
 - kills all expressions containing r1.
- Statement r1 = r2 + r3:
 - generates expression r2 + r3.
 - kills all expressions containing r1.

Iterative Dataflow Analysis Framework

- Specify:
 - Two set definitions A[n] and B[n]
 - A transfer function f(A, B, IN/OUT)
 - A confluence operator \vee .
 - A direction FORWARD or REVERSE.
- For forward analyses:

$$IN[n] = \bigvee_{p \in PRED[n]} OUT[p]$$

 $OUT[n] = f(A, B)$

• For reverse analyses:

$$OUT[n] = \bigvee_{s \in SUCC[n]} IN[s]$$
$$IN[n] = f(A, B)$$

Available Expression Analysis

Available Expression Analysis:

- exp(t) set of all expressions containing t.
- Set definition (A[n]): GEN[n] the set of all expressions generated by n.
- Set definition (B[n]): KILL[n] the set of all expressions that n kills exp(n).
- Transfer function (f(A, B, IN/OUT)): $GEN[n] \cup (IN[n] KILL[n])$
- Confluence operator (\vee) : \cap
 - Use of \cup , required initialization of IN and OUT sets to \emptyset .
 - Use of \cap , requires initialization of IN and OUT sets to U (except for IN of entry node).
- Direction: FORWARD

$$IN[n] = \cap_{p \in PRED[n]} OUT[p]$$

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

Example

Node	GEN	KILL	IN	OUT
1	M[A]	r1+r2, r1+12, r3+r1	-	U
2	M[B]	r1+r2	U	U
3	r1+r2	r3+r1	U	U
4	r3+r1		U	U
5			U	U
6		r1+r2, r3+r1, r1+12	U	U
7	r1+r2		U	U
8	r1+r2	M[r5]	U	U
9		M[A], M[B], M[r5]	U	U

Node	GEN	KILL	IN	OUT
1	1	378, 6, 4	-	U
2	2	378	U	U
3	378	4	U	U
4	4		U	U
5			U	U
6		378, 4, 6	U	U
7	378		U	U
8	378	9	U	U
9		1, 2, 9	U	U

Example

Common Subexpression Elimination (CSE)

Given statement s: t = x op y:

If expression $x \circ p$ y is available at beginning of node s then:

- 1. starting from node s, traverse CFG edges backwards to find last occurrence of x op y on each path from entry node to s.
- 2. create new temporary w.
- 3. for each statement s': v = x op y found in (1), replace <math>s' by:

$$w = x op y$$

 $\nabla = W$

4. replace statement s by: t = w

CSE Example

r1 + r2 in node 8 is a common subexpression.

Copy Propagation

- Given statement d: a = z (a and z are both register temps) $\rightarrow d$ is a copy statement.
- Given statement u: t = a op b.
- If d reaches u, no other definition of a reaches u, and no definition of z exists on any path from d to u, then replace u by: t = z op b.

Sets

- Sets have been used in all the dataflow and control flow analyses presented.
- There are at least 3 representations which can be used:
 - Bit-Arrays:
 - * Each potential member is stored in a bit of some array.
 - * Insertion, Member is O(1).
 - * Assuming set size of N and word size of W Union (OR) and Intersection (AND) is O(N/W).
 - Sorted Lists/Trees:
 - * Each member is stored in a list element.
 - * Insertion, Member, Union, Intersection is O(size). (Insertion, Member is $O(\log_2 size)$ in trees.)
 - * Better for sparse sets than bit-arrays.
 - Hybrids: Trees with bit-arrays
 - * Use Tree to hold elements containing bit-arrays.
 - * Union, Intersection is O(size/W). Insertion, Member is $O(\log_2 size/W)$.

Basic Block Level Analysis

- To improve performance of dataflow, process at basic block level.
 - Represent the entire basic block by a single *super-instruction* which has any number of destinations and sources.
 - Run dataflow at basic block level.
 - Expand result to the instruction level.
- Example:

```
p: r1 = r2 + r3 -> r1, r2 = r2, r3
n: r2 = r1
```

Basic Block Level Analysis

• Example:

• For reaching definitions:

$$OUT[n] = GEN[n] \cup (IN[n] - KILL[n])$$

But IN[n] = OUT[p]:

$$OUT[n] = GEN[n] \cup ((GEN[p] \cup (IN[p] - KILL[p])) - KILL[n])$$

Which (clearly) yields:

$$OUT[n] = GEN[n] \cup (GEN[p] - KILL[n]) \cup (IN[p] - (KILL[p] \cup KILL[n]))$$

So:

$$GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n])$$

$$KILL[pn] = KILL[p] \cup KILL[n]$$

• Can we do this at the loop or general region level?

Reducible Flow Graphs Revisited

Definition

- A flow graph is reducible iff each edge exists in exactly one class:
 - Forward edges (forms an acyclic graph where every node is reachable from start node)
 - 2. Back edges (head dominates tail)

Algorithm:

- 1. Remove all backedges
- 2. Check for cycles:
 - Cycles: Irreducible.
 - No Cycles: Reducible.

Think:

• All loop entry arcs point to header.

Reducible Flow Graphs – Structured Programs

Motivation:

- Structured programs are always reducible programs.
- Reducible programs are not always structured programs.
- Exploit the structured or reducible property in dataflow analysis.

Structures:

- Lists of instructions
- Conditionals/Hammocks
- While Loops (no breaks)

Method:

- Represent structures by a single super-instruction which has any number of destinations and sources.
- Run dataflow at structure level.
- Expand result to the instruction level.

Structured Program Analysis

• Lists of instructions - Basic Blocks!

$$GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n])$$

$$KILL[pn] = KILL[p] \cup KILL[n]$$

• Conditionals/Hammocks

$$GEN[lr] = GEN[l] \cup GEN[r]$$

$$KILL[lr] = KILL[l] \cap KILL[r]$$

• While Loops

$$\begin{split} GEN[loop] &= GEN[l] \\ KILL[loop] &= KILL[l] \end{split}$$

Try this on an irreducible flow graph...

Conservative Approximations Example

Register Allocation:

New Dataflow Analysis

Limitation of Dataflow Analysis

