Topic 10: Dataflow Analysis

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Analysis and Transformation

e Analysis:
— Control Flow Analysis
— Dataflow Analysis

e Transformation:

— Register Allocation

— Optimization
+ Machine dependent/independent
* Local/Global/Interprocedural
x Acyclic/Cyclic

— Scheduling

Dataflow Analysis Motivation

Constant Propagation and Dead Code Elimination:

Needs dominator, liveness, and reaching definition information.

Dataflow Analysis Motivation

Register Allocation:

e Infinite number of registers (virtual registers) must be mapped to a limited number
of real registers.

e Pseudo-assembly must be examined by /ive variable analysis to determine which
virtual registers contain values which may be used later.

e Virtual registers which are not simultaneously /ive may be mapped onto the same
real register.

1 r2 = rl + 1

2 r3 M[r2]

3 r4 r3 + 4

4 LOAD r5 = M[r2 + r4]

Dataflow Analysis

Three types we will cover:
e Live Variable

— Live range for register allocation
— Scheduling
— Dead code elimination

e Reaching Definitions
— Constant propagation
— Constant folding
— Copy propagation

e Available expressions

— Common subexpression elimination

Iterative Dataflow Analysis Framework

e These dataflow analyses are all very similar — define a framework.
e Specify:

— Two set definitions - An] and B[n]

— A transfer function - f (A, B,IN/OUT)

— A confluence operator -\ .

— A direction - FORWARD or REVERSE.

e For forward analyses:
I:\‘v[ll} = \/I)GPRED[II:()(;T[[)}
OUTIn| = f(A,B,IN)

e For reverse analyses:
()lvT[II] = \/565[7('('[”:[;\1.&‘]

IN[n] = f (A, B,OUT)

Definitions

Control Flow Definitions:
e CFG node has out-edges leading to successor nodes.
e CFG node has in-edges coming from predecessor nodes.
e For each CFG node n, PRE D|n] = set of all predecessors of 7.

e For each CFG node n, SUCC/|n] = set of all successors of n.

lterative Dataflow Analysis Framework

e Iterative dataflow analysis equations are applied in an iterative fashion until /N and
OUT sets do not change.

e Typically done in (FORWARD or REVERSE) topological sort order of CFG for
efficiency.

e [N and OUT sets initialized to ().

For each node n {
IN[n] = OUTI[n] = {};
}
Repeat {
For each node n in forward/reverse topological order (
IN’ [n] = IN[n];
OUT’ [n] = OUT[n];
IN[n], OUT[n] = (Equations);
}

} until IN’ [n] = IN[n] and OUT’ [n] = OUT[n] for all n.

Definitions for Liveness Analysis

Liveness Definitions:
e A source (RHS) register ¢ 1s a use of ¢.
e A destination (LHS) register ¢ is a definition of t.

e A register ¢ is /ive on edge e if there exists a path from e to a use of ¢ that does not
go through a definition of 7.

e Register 1s /ive-in at CFG node 7 ift is live on any in-edge of n.

e Register is /ive-out at CFG node n if ¢ is live on any out-edge of nn.

Definitions for Liveness Analysis

Live Variable Analysis Equation:
e Set definition (A[n]): USE[n| - the set of registers that n uses.
o Set definition (B[n]): DEF[n] - the set of registers that n defines.
o Transfer function (f(A, B,OUT)): USE[n| U (OUT[n] — DEF|n])
e Confluence operator (V): U

e Direction: REVERSE

OUTIn| = U,ﬁ,eg(j(v(v[,,:]:\v[.s‘]
IN[n| = USE[R]U(OUT[n| — DEF[n])

Live Variable Analysis Example

5:| branchrl <10,L1

Node |USE|DEF| OUT IN ouT IN ouT IN

AN B W

Live Variable Application 1: Register Allocation

Register Allocation:
1. Perform live variable analysis.
2. Build interference graph.

3. Color interference graph with real registers.

Interference Graph

e Node ¢ corresponds to virtual register ¢.
o Edge (1;.1;) exists if registers #;, t; have overlapping live ranges.

e For some node n, if DEF[n] = {a} and OUT[n] = {by, ba, ...b;.}, then add interfer-
ence edges: (a,by) . (a,bs). (a,by)

Interference Graph For Example:
Node | DEF |OUT IN
1 rl rl.r3 13
2 |r2.x3 rl.r3
3 |23 1213
rl rl.r3 r2.13
- |rl,13 rl13
- 3

AN B W

Virtual registers 1 and r2 may be mapped to same real registers.

Live Variable Application 2:

Dead Code Elimination

e Given statement s with a definition and no side-eftfects:
rl = r2 + r3, rl = M[r2], or rl = r2
If r1 is not live at the end of s, then the s 1s dead

e Dead statements can be deleted.

e Given statement s without a definition or side-effects:
rl = call FUN NAME, M[rl] = r2
Even if rl is not live at the end of s, it 1s not dead.

Example:

rl r2 + 1
r2 = r2 + 2
rl = r2 + 3
M[rl] = r2

Reaching Definition Analysis

Determines whether definition of register ¢ directly affects use of ¢ at some point in pro-
gram.

Reaching Definition Definitions:
e unambiguous - instruction explicitly defines register .
e ambiguous - instruction may or may not define register ¢.

— Global variables in a function call.
— No ambiguous definitions in tiger since all globals are stored in memory.
e Definition of d (of t) reaches statement u if a path of CFG edges exists from d to u
that does not pass through an unambiguous definition of 7.

e One unambiguous and many ambiguous definitions of ¢ may reach u on a single
path.

Reaching Definition Analysis

Reaching Definition Analysis Equation:
o Set definition (A[n]): GEN|n| - the set of definition id’s that n creates.
o Set definition (B(n]): KILL[n| - the set of definition id’s that n kills.
—defs(t) - set of all definition id’s of register t.
e Transfer function (f(A, B,IN)): GEN[n|U (IN[n| — KILL|n])
e Confluence operator (\VV): U
e Direction: FORWARD

[A\‘Y[II} = UpEPRED[n:(—)FT[P]
OUTn] = GEN[n] U (IN[n| — KILL[n])

Reaching Definition Analysis Example

2: r3=1

6| t4=10 | 3:[branch3>11,6: |
AR 4 s=s+1 |
s:[Mm]=r1 | 5| got‘o 3 |

Node | GEN|KILL| IN OUT IN OUT IN ouT

(eI B NV, RN SNV S)

Reaching Definition Application 1:

Constant Propagation

e Given Statement d: a = c where a is constant

e Given Statement u: t = a op b

e If statement d reach « and no other definition of a reaches u, then replace u b
c op b.

Statements 1 and 6 are dead.

Constant Folding

e Given Statement d: t = a op b

e If 2 and b are constant, compute c as a op b, replace dbyt = c

M[r3] =1l

Common Subexpression Elimination

If x op y is computed multiple times, common subexpression elimination (CSE) at-
tempts to eliminate some of the duplicate computations.

1 r=MA] |

2:‘ 2=rl+10

v

30 B=MA] |
v
4:\ r4=13+1 |

v

5:‘ 5=r4+12 ‘

Need to track expression propagation — available expression analysis

Definitions

e Expression x op v is available at CFG node n if, on every path from CFG entry
node to n, x op vy is computed at least once, and neither x nor y are defined since
last occurrence of x op y on path.

e Can compute set of expressions available at each statement using system of dataflow
equations.

e Statement r1 = M[r2]:

— generates expression M[r2] .

— kills all expressions containing rl.
e Statement rl = r2 + r3:

— generates expression r2 + r3.
— kills all expressions containing rl.

Iterative Dataflow Analysis Framework

e Specify:
— Two set definitions - An| and B|n|
— A transfer function - f (A, B,IN/OUT)
— A confluence operator - \/.
— A direction - FORWARD or REVERSE.
e For forward analyses:
IN[n| = Vpeprepp OUTp)
OUT[n| = f (A, B)
e For reverse analyses:
OUTn| = VeesvcomI N|s|
IN[n| = f(A.B)

Available Expression Analysis

Available Expression Analysis:
e cap(t) - set of all expressions containing .
o Set definition (A[n]): GEN|n]| - the set of all expressions generated by .
e Set definition (B[n]): KILL[n| - the set of all expressions that r kills - exp(n).
e Transfer function (f(A, B, IN/OUT)): GEN[n] U (IN[n] — KILL[n])
e Confluence operator (V): N
— Use of U, required initialization of I N and OUT sets to ().

— Use of N, requires initialization of /N and OUT sets to U (except for IN of
entry node).

e Direction: FORWARD
[.“\Y[n] = ﬂpngED[,,:()[»“'Th)]
OUTn| = GEN[n|U (IN[n] — KILL[n|)

Example
Node | GEN KILL IN OUT
1 | M[A] | rl+e2, r1+12, 1341 | - U
1 2 | M[B] rl+r2 U v
3 |12 r3+rl [
2 4 |r3+rl u v
5 u U
3: 6 rl+r2, r3+rl, r1+12 | U U
7 |rl4r2 v v
4: 8 |rl+r2 M[r5] v U
9 M[A]LM[B],M[r5] | U U

branch 13 > 12

Node | GEN | KILL |IN OUT

o n-acn | T 1 [37m.64]- U
2 2 378 [Za—

7: 3| 378 4 U U
4 | 4 U

5 U ou

6 378.4,6|U U

7 378 (2

8 378 9 (2

9 L2.9 |U U

Node | GEN | KILL [IN OUT
1 1 378,4.6| - U
1: 2 2 378 [
3 378 4 [
2- 4 4 [
5 [
3: 6 378,46 U U
7 378 [
4: 8 378 9 U U
9 ,2,9 |U U
5: branch 13 > 12
Node IN ouT IN ouT
2
5
6
7
8
9

Common Subexpression Elimination (CSE)

Given statement s: t = X op y:
If expression x op vy is available at beginning of node s then:

1. starting from node s, traverse CFG edges backwards to find last occurrence of
x op vy on each path from entry node to s.

2. create new temporary w.

3. for each statement s": v = x op vy found in (1), replace s’ by:
W =X O0p Yy
V=W

4. replace statement s by: t = w

CSE Example

rl + r2innode 8is a common subexpression.

Copy Propagation

e Given statement d: a = z (a and z are both register temps) — d is a copy state-
ment.

e Given statement u: t = a op b.
e If d reaches u, no other definition of a reaches u, and no definition of z exists on
any path from d to u, then replace uby: t = z op b.

9: M[15] =14

Sets

e Sets have been used in all the dataflow and control flow analyses presented.
e There are at least 3 representations which can be used:
— Bit-Arrays:
« Each potential member is stored in a bit of some array.

« Insertion, Member is O(1).
x Assuming set size of N and word size of W - Union (OR) and Intersection

(AND) is O(N/W).
— Sorted Lists/Trees:

+ Each member is stored in a list element.
* Insertion, Member, Union, Intersection is O(size). (Insertion, Member is

O(logy size) 1n trees.)
« Better for sparse sets than bit-arrays.
— Hybrids: - Trees with bit-arrays
« Use Tree to hold elements containing bit-arrays.
* Union, Intersection is O(size /). Insertion, Member is O (log, size/WW).

Basic Block Level Analysis

e To improve performance of datatlow, process at basic block level.
— Represent the entire basic block by a single super-instruction which has any num-
ber of destinations and sources.
— Run dataflow at basic block level.
— Expand result to the instruction level.

e Example:
p: rl = r2 + r3 -> rl, r2 = r2, r3
n: r2 = rl

Basic Block Level Analysis

e Example:
p: rl = r2 + r3 -> rl, r2 = r2, r3
n: r2 =rl

e For reaching definitions:
OUT[n] = GEN[n| U (IN[n] — KILLn])
But IN[n] = OUT[p]:
OUTn] = GEN[n|U ((GEN[p|U(IN[p] — KILL[p|)) — KILL[n])
Which (clearly) yields:
OUTn] = GEN[n]U(GEN|p] — KILL[n])U (IN[p] — (KILL[p] U KILL[n]))

So:
GEN|[pn| = GEN[n]U(GEN|p| — KILL[n|)
KILL[pn] = KILL[p| U KILL[n|

e Can we do this at the loop or general region level?

Reducible Flow Graphs Revisited

Definition
e A flow graph is reducible iff each edge exists in exactly one class:

1. Forward edges (forms an acyclic graph where every node is reachable from start
node)
2. Back edges (head dominates tail)

Algorithm:
1. Remove all backedges
2. Check for cycles:
e Cycles: Irreducible.
e No Cycles: Reducible.

Think:

e All loop entry arcs point to header.

Reducible Flow Graphs — Structured Programs

Motivation:

e Structured programs are always reducible programs.

e Reducible programs are not always structured programs.

e Exploit the structured or reducible property in datatlow analysis.
Structures:

e Lists of instructions

e Conditionals/Hammocks

e While Loops (no breaks)
Method:

e Represent structures by a single super-instruction which has any number of destina-
tions and sources.

e Run dataflow at structure level.

e Expand result to the instruction level.

Structured Program Analysis

e Lists of instructions - Basic Blocks!
GEN|pn] = GEN[n]U(GEN|p| — KILL[n])
KILL[pn| = KILL[p| U KILL|n|
¢ Conditionals/Hammocks
GENI|lr] = GEN[[|UGEN]r|
KILL[lr| = KILL[l|n KILL[r|

e While Loops
GEN [loop] = GEN]I|

KILL[loop] = KILL|]

Try this on an irreducible flow graph...

Conservative Approximations Example

Register Allocation:

TAKEN/TRUE

New Dataflow Analysis

o =1 |

|
1: ’ bral}ch 22? ‘
Sl a=n+1l |

!

branchrl <3

q.
3

/

\\L TAKEN/TRUE
4: ’ branchrl <5 ‘

TAKENTRUE _—

5: = 11 ‘ 6: ‘

Iy

Limitation of Dataflow Analysis

'

l:‘ rl =12 %12 ‘
!
2:‘ r3=rl+r2 ‘

'

3:’ branch 13 >=12 ‘

TAKEN/ T%/\
“

4: =rl ‘ 5:‘ =13

