Topic 10: Dataflow Analysis

Dataflow Analysis Motivation

- Analysis:
 - Control Flow Analysis
 - Dataflow Analysis

- Transformation:
 - Register Allocation
 - Optimization
 - Machine dependent/independent
 - Local/Global/Interprocedural
 - Acyclic/Cyclic
 - Scheduling

Dataflow Analysis Motivation

- Register Allocation:
 - Infinite number of registers (virtual registers) must be mapped to a limited number of real registers.
 - Pseudo-assembly must be examined by *live variable analysis* to determine which virtual registers contain values which may be used later.
 - Virtual registers which are not simultaneously *live* may be mapped onto the same real register.

1 \[r2 = r1 + 1 \]
2 \[r3 = M[r2] \]
3 \[r4 = r3 + 4 \]
4 \[\text{LOAD} \quad r5 = M[r2 + r4] \]

Needs dominator, liveness, and reaching definition information.
Dataflow Analysis

Three types we will cover:

- Live Variable
 - Live range for register allocation
 - Scheduling
 - Dead code elimination
- Reaching Definitions
 - Constant propagation
 - Constant folding
 - Copy propagation
- Available expressions
 - Common subexpression elimination

Definitions

Control Flow Definitions:

- CFG node has out-edges leading to successor nodes.
- CFG node has in-edges coming from predecessor nodes.
- For each CFG node n, $PRED[n]$ = set of all predecessors of n.
- For each CFG node n, $SUCC[n]$ = set of all successors of n.

Iterative Dataflow Analysis Framework

- These dataflow analyses are all very similar → define a framework.
- Specify:
 - Two set definitions - $A[n]$ and $B[n]$
 - A transfer function - $f(A, B, IN/OUT)$
 - A confluence operator - \therefore
 - A direction - FORWARD or REVERSE.
- For forward analyses:
 \[
 IN[n] = \bigvee_{p \in PRED[n]} OUT[p] \\
 OUT[n] = f(A, B, IN)
 \]
- For reverse analyses:
 \[
 OUT[n] = \bigvee_{s \in SUCC[n]} IN[s] \\
 IN[n] = f(A, B, OUT)
 \]

- Iterative dataflow analysis equations are applied in an iterative fashion until IN and OUT sets do not change.
- Typically done in (FORWARD or REVERSE) topological sort order of CFG for efficiency.
- IN and OUT sets initialized to \emptyset.

For each node n {
 \[
 IN[n] = OUT[n] = \{\};
 \]
 Repeat {
 For each node n in forward/reverse topological order {
 \[
 IN'[n] = IN[n];
 OUT'[n] = OUT[n];
 IN[n], OUT[n] = (Equations);
 \]
 } until $IN'[n] = IN[n]$ and $OUT'[n] = OUT[n]$ for all n.}
Definitions for Liveness Analysis

Live Variable Analysis Example

<table>
<thead>
<tr>
<th>Node</th>
<th>USE</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>r1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>r2</td>
<td>r1+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>r3</td>
<td>r3+r2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>r4</td>
<td>r4*2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>branch r1 < 10, L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>return r3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions for Liveness Analysis

Live Variable Analysis Equation:

- Set definition \((A[n]) \): \(USE[n] \) - the set of registers that \(n \) uses.
- Set definition \((B[n]) \): \(DEF[n] \) - the set of registers that \(n \) defines.
- Transfer function \((f(A, B, OUT)) \):
 \[
 USE[n] \cup (OUT[n] - DEF[n])
 \]
- Confluence operator \((\lor) \):
 \[
 \lor
 \]
- Direction: \(\text{REVERSE} \)

\[
OUT[n] = \lor_{s \in SUC[n]} IN[s]
\]

\[
IN[n] = USE[n] \cup (OUT[n] - DEF[n])
\]

Live Variable Application 1: Register Allocation

Register Allocation:

1. Perform live variable analysis.
2. Build *interference graph*.
3. Color interference graph with real registers.
Interference Graph

- Node t corresponds to virtual register t.
- Edge $\langle t_i, t_j \rangle$ exists if registers t_i, t_j have overlapping live ranges.
- For some node n, if $DEF[n] = \{a\}$ and $OUT[n] = \{b_1, b_2, \ldots, b_k\}$, then add interference edges: $\langle a, b_1 \rangle, \langle a, b_2 \rangle, \ldots, \langle a, b_k \rangle$

Interference Graph For Example:

<table>
<thead>
<tr>
<th>Node</th>
<th>DEF</th>
<th>OUT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>r1</td>
<td>r1,r3</td>
<td>r3</td>
</tr>
<tr>
<td>2</td>
<td>r2</td>
<td>r2,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>3</td>
<td>r3</td>
<td>r2,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td>r1,r3</td>
<td>r2,r3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>r1,r3</td>
<td>r1,r3</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td></td>
<td>r3</td>
</tr>
</tbody>
</table>

Virtual registers r1 and r2 may be mapped to same real registers.

Live Variable Application 2: Dead Code Elimination

- Given statement s with a definition and no side-effects:

 $\begin{align*}
 r_1 &= r_2 + r_3, \quad r_1 = M[r_2], \text{ or } r_1 = r_2 \\
 \text{If } r_1 &\text{ is not live at the end of } s, \text{ then the } s \text{ is dead}
 \end{align*}$

- Dead statements can be deleted.

- Given statement s without a definition or side-effects:

 $\begin{align*}
 r_1 &= \text{call } \text{FUN_NAME, } M[r_1] = r_2 \\
 \text{Even if } r_1 &\text{ is not live at the end of } s, \text{ it is not dead.}
 \end{align*}$

Example:

$\begin{align*}
 r_1 &= r_2 + 1 \\
 r_2 &= r_2 + 2 \\
 r_1 &= r_2 + 3 \\
 M[r_1] &= r_2
 \end{align*}$

Reaching Definition Analysis

Determine whether definition of register t directly affects use of t at some point in program.

Reaching Definition Definitions:

- *unambiguous* - instruction explicitly defines register t.
- *ambiguous* - instruction may or may not define register t.

 - Global variables in a function call.
 - No ambiguous definitions in tigers since all globals are stored in memory.

 - Definition of d (of t) reaches statement u if a path of CFG edges exists from d to u that does not pass through an unambiguous definition of t.

 - One unambiguous and many ambiguous definitions of t may reach u on a single path.

 - Set definition $(A[n])$: $GEN[n]$ - the set of *definition id’s* that n creates.

 - Set definition $(B[n])$: $KILL[n]$ - the set of *definition id’s* that n kills.

 $\text{-- } decfs(t) - \text{ set of all } definition \text{ id’s} \text{ of register } t.$

 - Transfer function $(\langle A, B, IN \rangle)$: $GEN[n] \cup (IN[n] - KILL[n])$

 - Confluence operator (\lor): \lor

 - Direction: FORWARD

\[
\begin{align*}
IN[n] &= \cup_{p \in \text{PREDEF}[n]} OUT[p] \\
OUT[n] &= GEN[n] \cup (IN[n] - KILL[n])
\end{align*}
\]
Reaching Definition Application 1:

Constant Propagation

- Given Statement d: $a = c$ where a is constant
- Given Statement u: $t = a \, \text{op} \, b$
- If statement d reach u and no other definition of a reaches u, then replace u by $c \, \text{op} \, b$.

Statements 1 and 6 are dead.

Constant Folding

- Given Statement d: $t = a \, \text{op} \, b$
- If a and b are constant, compute c as $a \, \text{op} \, b$, replace d by $t = c$

Common Subexpression Elimination

If $x \, \text{op} \, y$ is computed multiple times, common subexpression elimination (CSE) attempts to eliminate some of the duplicate computations.

Need to track expression propagation → available expression analysis
Definitions

• Expression \(x \ op \ y \) is available at CFG node \(n \) if, on every path from CFG entry node to \(n \), \(x \ op \ y \) is computed at least once, and neither \(x \) nor \(y \) are defined since last occurrence of \(x \ op \ y \) on path.
• Can compute set of expressions available at each statement using system of dataflow equations.
• Statement \(x = M[x] \):
 – generates expression \(M[x] \).
 – kills all expressions containing \(x \).
• Statement \(x = x + x \):
 – generates expression \(x + x \).
 – kills all expressions containing \(x \).

Available Expression Analysis

• exp(t) - set of all expressions containing \(t \).
• Set definition \((A[n])\): \(GEN[n] \) - the set of all expressions generated by \(n \).
• Set definition \((B[n])\): \(KILL[n] \) - the set of all expressions that \(n \) kills - \(\exp(n) \).
• Transfer function \((f(A, B, IN/OUT))\): \(GEN[n] \cup (IN[n] - KILL[n]) \)
• Confluence operator \((\triangledown)\): \(\cap \)
 – Use of \(\cup \), required initialization of \(IN \) and \(OUT \) sets to \(\emptyset \).
 – Use of \(\cap \), requires initialization of \(IN \) and \(OUT \) sets to \(U \) (except for \(IN \) of entry node).
• Direction: FORWARD

\[
\begin{align*}
 IN[n] &= \cap_{p \in PRED[n]} OUT[p] \\
 OUT[n] &= GEN[n] \cup (IN[n] - KILL[n])
\end{align*}
\]

Iterative Dataflow Analysis Framework

• Specify:
 – Two set definitions - \(A[n] \) and \(B[n] \)
 – A transfer function - \(f(A, B, IN/OUT) \)
 – A confluence operator - \(\triangledown \).
 – A direction - FORWARD or REVERSE.
• For forward analyses:

\[
\begin{align*}
 IN[n] &= \triangledown_{\in \text{pred}(n)} OUT[p] \\
 OUT[n] &= f(A, B)
\end{align*}
\]
• For reverse analyses:

\[
\begin{align*}
 OUT[n] &= \triangledown_{\in \text{succ}(n)} IN[s] \\
 IN[n] &= f(A, B)
\end{align*}
\]

Example

Available Expression Analysis:

Node	GEN	KILL	IN	OUT
1 | M[A] | r1+r2, r1+r12, r3+r1 | - | U
2 | M[B] | r1+r2 | U | U
3 | r1+r2 | r3+r1 | U | U
4 | r3+r1 | U | U
5 | r1+r2, r3+r1, r1+r12 | U | U
6 | r1+r2 | U | U
7 | r1+r2, M[r5] | U | U
8 | M[A], M[B], M[r5] | U | U

Example

Node	GEN	KILL	IN	OUT
1 | 1 | 1 | 378, 6, 4 | U
2 | 2 | 378 | U | U
3 | 378 | 4 | U | U
4 | 4 | U | U
5 | 5 | U | U
6 | 378, 4, 6 | U | U
7 | 378 | U | U
8 | 378 | 9 | U | U
9 | 1, 2, 9 | U | U
Common Subexpression Elimination (CSE)

Given statement $s: t = \times \text{ op } y$:

If expression $\times \text{ op } y$ is available at beginning of node s then:

1. starting from node s, traverse CFG edges backwards to find last occurrence of $\times \text{ op } y$ on each path from entry node to s.
2. create new temporary w.
3. for each statement $s': v = \times \text{ op } y$ found in (1), replace s' by:

 $w = \times \text{ op } y$

 $v = w$

4. replace statement s by: $t = w$

Copy Propagation

- Given statement $d: a = z$ (a and z are both register temps) $\rightarrow d$ is a copy statement.
- Given statement $u: t = a \text{ op } b$.
- If d reaches u, no other definition of a reaches u, and no definition of z exists on any path from d to u, then replace u by: $t = z \text{ op } b$.

$r_1 + r_2$ in node 8 is a common subexpression.
Sets

• Sets have been used in all the dataflow and control flow analyses presented.
• There are at least 3 representations which can be used:
 – Bit-Arrays:
 * Each potential member is stored in a bit of some array.
 * Insertion, Member is $O(1)$.
 * Assuming set size of N and word size of W, Union (OR) and Intersection (AND) is $O(N/W)$.
 – Sorted Lists/Trees:
 * Each member is stored in a list element.
 * Insertion, Member, Union, Intersection is $O(size)$. (Insertion, Member is $O(\log_2 size)$ in trees.)
 * Better for sparse sets than bit-arrays.
 – Hybrids: Trees with bit-arrays
 * Use Tree to hold elements containing bit-arrays.
 * Union, Intersection is $O(size/W)$. Insertion, Member is $O(\log_2 size/W)$.

Basic Block Level Analysis

• To improve performance of dataflow, process at basic block level.
 – Represent the entire basic block by a single super-instruction which has any number of destinations and sources.
 – Run dataflow at basic block level.
 – Expand result to the instruction level.
• Example:

 p: \(r_1 = r_2 + r_3 \) \rightarrow r_1, r_2 = r_2, r_3

 n: r_2 = r_1

Reducible Flow Graphs Revisited

• Example:

 p: \(r_1 = r_2 + r_3 \) \rightarrow r_1, r_2 = r_2, r_3

 n: r_2 = r_1

• For reaching definitions:

 \(OUT[n] = GEN[n] \cup (IN[n] - KILL[n]) \)

 But \(IN[n] = OUT[p] \):

 \(OUT[n] = GEN[n] \cup ((GEN[p] \cup (IN[p] - KILL[p])) - KILL[n]) \)

 Which (clearly) yields:

 \(OUT[n] = GEN[n] \cup (GEN[p] - KILL[n]) \cup (IN[p] - (KILL[p] \cup KILL[n])) \)

 So:

 \(GEN[pm] = GEN[n] \cup (GEN[p] - KILL[n]) \)

 \(KILL[pm] = KILL[p] \cup KILL[n] \)

• Can we do this at the loop or general region level?

Definition

• A flow graph is reducible iff each edge exists in exactly one class:
 1. Forward edges (forms an acyclic graph where every node is reachable from start node)
 2. Back edges (head dominates tail)

Algorithm:

1. Remove all backedges
2. Check for cycles:
 • Cycles: Irreducible.
 • No Cycles: Reducible.

Think:

• All loop entry arcs point to header.
Reducible Flow Graphs – Structured Programs

Motivation:
- Structured programs are always reducible programs.
- Reducible programs are not always structured programs.
- Exploit the structured or reducible property in dataflow analysis.

Structures:
- Lists of instructions
- Conditionals/Hammoocks
- While Loops (no breaks)

Method:
- Represent structures by a single super-instruction which has any number of destinations and sources.
- Run dataflow at structure level.
- Expand result to the instruction level.

Structured Program Analysis

- Lists of instructions - Basic Blocks!

 \[
 GEN[pn] = GEN[n] \cup (GEN[p] - KILL[n])
 \]
 \[
 KILL[pn] = KILL[p] \cup KILL[n]
 \]

- Conditionals/Hammoocks

 \[
 GEN[lr] = GEN[l] \cup GEN[r]
 \]
 \[
 KILL[lr] = KILL[l] \cap KILL[r]
 \]

- While Loops

 \[
 GEN[loop] = GEN[l]
 \]
 \[
 KILL[loop] = KILL[l]
 \]

Try this on an irreducible flow graph...

Conservative Approximations Example

New Dataflow Analysis

Register Allocation:

```
0: r1 = 1
1: branch ???
2: r1 = r1 + 1
3: branch r1 < 3
4: branch r1 < 5
5: TAKEN/TRUE
6: TAKEN/TRUE
```

```
0: r1 = 1
1: branch ???
2: r1 = r1 + 1
3: branch r1 < 3
4: branch r1 < 5
5: TAKEN/TRUE
6: TAKEN/TRUE
```
Limitation of Dataflow Analysis

1: $r1 = r2 * r2$
2: $r3 = r1 + r2$
3: branch $r3 \geq r2$
4: $= r1$
5: $= r3$

TAKEN/TRUE