Topic 9: Static Single Assignment

COS 320

Compiling Techniques

Princeton University
Spring 2018

Prof. David August

Def-Use Chains, Use-Def Chains

e Many optimizations need to find all use-sites for each definition, and all definition-
sites for each use.

— Constant propagation must refer to the definition-site of the unique reaching det-
nition.

— Copy propagation, reverse copy propagation, common sub-expression elimina-
tion...

e Information connecting all use-sites to corresponding definition-sites can be stored
as def-use chains and/or use-def chains.

e def-use chains: tor each definition d of r, list of pointers to all uses of r that d
reaches.

e use-def chains: for each use u of r, list of pointers to all definitions of r that reach
1.

Use-Def Chains, Def-Use Chains

V_

-

branch 13 > rlj ‘.

v

A

6 =10
v

7 rl=1]1+14
v

3 M[13] = 11

y

g0to 3:

Static Single Assignment

Static Single Assignment (SSA):

e 1mprovement on def-use chains

e cach register has only one definition in program

e for each use u of , only one definition of » reaches u

rl =5

v

rl=rl+1

- T

2=rl+1

r3=rl -1

Why SSA?

Static Single Assignment Advantages:
e Dataflow analysis and code optimization made simpler.

— Varniables have only one definition - no ambiguity.

— Dominator information 1s encoded 1n the assignments.

e Less space required to represent def-use chains. For each variable, space 1s propor-
tional to uses * defs.

e Eliminates unnecessary relationships:

for 1 = 1 to N do A[i] = 0
for 1 = 1 to M do B[i] =1

— No reason why both loops should be forced to use same register to hold index
register.

— SSA renames second 1 to new register which may lead to better register alloca-
tion/optimization.

(Dynamic Single Assignment 1s also proposed 1n the literature.)

Conversion to SSA Code

Easy to convert basic blocks into SSA form:
e Each definition modified to define brand-new register, instead of redefining old one.

e Each use of register modified to use most recently defined version.

rl = r3 + r4
r2 =rl - 1
rl = r4d + r2
r2 = rb * 4

rl = 1rl1 + 2

Control flow introduces problems.

Conversion to SSA Form

rl =35

v

r2=rl +1

Use ¢ functions.

4 =13 %4

Conversion to SSA Form

e o-functions enable the use of 13 to be reached by exactly one definition of r3.

o 3" = p(r3,r3):
— 3" = r31f control enters from left
— 3" = r3’ if control enters from right
e Can implement ¢-functions as set of move operations on each mcoming edge.

e In practice, ¢o-functions are just used as notation.

Conversion to SSA Form

Can msert ¢-functions for each register at each node with more than two predecessors.

rl =5
V
r2=rl +1
3 = 1‘5 + 1 r3 — r2 -1

T

4 =13 *rl

We can do better...

Conversion to SSA Form

Path-Convergence Criterion: Insert a ¢-function for a register » at node = of the flow
graph 1f ALL of the following are true:

1. There 1s a block x containing a definition of r.

. There 1s a block y # x containing a definition of r.

(S O]

. There 1s a non-empty path P,. of edges from x to z.
. There 1s a non-empty path P,. of edges from y to .

. Paths P,. and ;. do not have any node in common other than z.

SN R

. The node = does not appear within both £,.. and ;. prior to the end, though 1t may
appear 1n one or the other.

Assume CFG entry node contains implicit definition of each register:
e 1 = actual parameter value
e r = undefined

o-tunctions are counted as definitions.

Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes z, y, z satisfying conditions 1-6) &&
(z does not contain a phi-function for) DO:
isert = ¢(r, r, ..., r) (one per predecessor) at node z.

e Costly to compute.

e Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Dominance Frontier

Definitions:
e u sirictly dominaftes w 1f x dominates w and = # w.

e dominance frontier of node z 1s set of all nodes w such that » dominates a predeces-
sor of w, but does not strictly dominate w.

v
1
T I
2 |/ 3 9
; LS 7
4 \ " -
\\ =
11

Dominance Frontier

e Dominance Frontier Criterion: Whenever node = contains definition of some reg-
ister r, then need to msert ¢-function for r 1n all nodes = 1n dominance frontier of
T

e [terated Dominance Frontier: Need to repeatedly apply since ¢-function counts as
a definition.

Dominance Frontier Computation

e Use dominator tree
e DF'[n|: dominance frontier of n
® DFj,..lnl: successors of n in CFG that are not strictly dominated by 7

e DF,,[c|: nodes in dominance frontier of ¢ that are not strictly dominated by ¢’s
immediate dominator

DF [72] =D EOC(I-I [72.] U (Ucecfh.ildren[n]D Fuv‘]) [(D
e where children|n| are the nodes whose idom 1s n.

e Work bottom up 1n dominator tree.

SSA Example

rl =1

2: 12=1

| Node| DOMIr] IDOM[n]
3: 13=0 -

.

branch r3 < 100

5: branch 12 < 20 6: return r2

7: 2 =rl 9: =13

I y

8: 3=1r3+1 10: 3=1r3+2

O 1 N D s W0

o

e
— O

11:

Dominator Analysis

e If d dominates each of the p;, then d dominates .
e If d dominates n, then d dominates each of the p;.
e Dom|n| = set of nodes that dominate node n.
e /\V = set of all nodes.

e Computation:

1. Domlsp| = {s0}.

2.forn € N — {5y} do Dom|n| = N

3. while (changes to any Dom|n| occur) do
4. forne N —{sy} do

5. Dom[n] = {n} U (Myepreap Dom|[p).

SSA Example

SSA Example

Insert p/i-functions:
1: rl =1
V
2: 12 =1
v
3: 3=0

P

branch r3 < 100

branch 12 < 20 6: return 12

V ___________""“--———-___ I|
7 2=rl 9: 12=r13
i w |

8: 3=r3+1 10: 3=13+2

N

11:

SSA Example

Rename Variables:
1. traverse dominator tree, renaming different definitions of 7 to 1. 79, 13...
2. rename each regular use of » to most recent definition of r

3. rename ¢-function arguments with each incoming edge’s unique definition

SSA Example

I:

N

Rename Variables:

rl =1

I

2=1

I

3=0

v

branch r3 < 100

v ——

branch 12 < 20

12=rl

I

3=13+1

returmn r2

12=13

{

13=13+2

11:

Static Single Assignment

Static Single Assignment Advantages:

e L ess space required to represent def-use chains. For each variable, space 1s propor-
tional to uses * defs.

e Eliminates unnecessary relationships:

for i = 1 to N do A[i] = 0
for i =1 to M do B[1i] =1

— No reason why both loops should be forced to use same register to hold index
register.

— SSA renames second i to new register which may lead to better register alloca-
tion.

e SSA form make certain optimizations quick and easy — dominance property.

— Varniables have only one definition - no ambiguity.
— Dominator information 1s encoded 1n the assignments.

SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

th th

o If r 1s 7" argument of ¢-function in node 7, then definition of » dominates ¢
predecessor of n.

e If 7 1s used 1 non-¢ statement 1n node rn, then definition of » dominates 7.

SSA Dead Code Elimination

Givend:t = x op vy
e t 1s live at end of node d if there exists path from end of to use of t that does not
go through definition of t.

e if program not in SSA form, need to perform liveness analysis to determine 1f t live
at end of d.

e 1f program 1s in SSA form:
— cannot be another definition of t
— 1f there exists use of t, then path from end of d to use exists, since definitions
dominate uses.

* every use has a unique definition
+ t 1s live at end of node d 1f t 1s used at least once

SSA Dead Code Elimination

Algorithm:

WHILE (for each temporary t with no uses &&
statement defining t has no other side-effects) DO
delete statement definition t

1: rl=35

2: 2=10

3: branch 3 > 12

4. 2’=12+15

5: 4=1r3+X

— =

6:| 12”7 :(]) (r2°, 12)

7: M[r4]=12"

SSA Simple Constant Propagation

Givend: t = c,cisconstant Givenu: Xx = £t op b
e 1f program not in SSA form:

— need to perform reaching definition analysis
—use of t 1n u may be replaced by c 1f d reaches » and no other definition of t
reaches u
e 1f program 1s m SSA form:
— d reaches wu, since definitions dominate uses, and no other definition of t exists
on path from d to u
— d 1s only definition of t that reaches u. since 1t 1s the only definition of t.

* any use of t can be replaced by ¢
* any ¢-function of formv = o(cq, 9, ..., ¢,,), where ¢; = ¢, can be replaced by
vV = C

SSA Simple Constant Propagation

SSA Conditional Constant Propagation

N

rl=

12=1

‘V

3=0

V.

12° =#12,12°7)
137 =#(13,13")

branch r3° < 100

V __________________________2"3._
branch 12 < 20 6: return r2’
v E— —
2 =11 9: 1277 =13’
' V
B3 =13"+1 10: 1377 =13"+2
11. 1‘2,.)33 :#(1‘23-“? 1,2')3'))

1,3:333 — #(1,3331 1,3333)

r2 always has value of 1
nodes 9, 10 never executed

“simple” constant propagation algo-
rithms assumes (through reaching defi-
nitions analysis) nodes 9, 10 may be ex-
ecuted.

cannot optimize use of r2 1n node 5
since definitions 7 and 9 both reach 3.

SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:
e Does not assume a node can execute until evidence exists that it can be.
e Does not assume register 1s non-constant unless evidence exists that it 1s.
Track run-time value of each register r using /aftice of values:

e /[r] = L (bottom): compiler has seen no evidence that any assignment to r is ever
executed.

e /|| = 4: compiler has seen evidence that an assignment r = 4 1s executed, but
has seen no evidence that r 1s ever assigned to another value.

o /|| = T (top): compiler has seen evidence that r will have, at various times, two
different values, or some value that 1s not predictable at compile-time.

Also:
e all registers start at bottom of lattice

e new mformation can only move registers up 1n lattice

SSA Conditional Constant Propagation

Track executability of each node in V:
e [/|N| = false: compiler has seen no evidence that node /N can ever be executed.
o [/|N| = true: compiler has seen evidence that node /V can be executed.
[nmitially:
o /|r| = L, for all registers r
o [|sy| = true, sg1s CFG start node
o [/|N| = false, for all CFG nodes N +# s

SSA Conditional Constant Propagation

Algorithm: apply following conditions until no more changes occur to £ or V' values:

l.

(OS]

. Given: executable assignment r

. Given: executable assignment r

Given: register r with no definition (formal parameter, uninitialized).
Action: V[r| =T

. Given: executable node B with only one successor C'

Action: F|C] = true

x op v,V [l’] = ¢y and V[y} = 9
Action: V[r| = ciopco

x op v, V][r]=TorVyl =T
Action: V|r| =T

. Given: executable assignment ¥ = (1,29, ..., 2,,), V]| = ¢, V]

predecessors 2 and j are executable
Action: V[r| =T

— (9, and

SSA Conditional Constant Propagation

10.

. Given: executable assignmentr = M[..] orr = f£(..)

Action: V[r| =T

. Given: executable assignment v = ¢(x1,x9, ..., xy,), V]z; = T, and predecessor i

1s executable
Action: V[r| =T

. Given: executable assignment r = ¢&(x1, 29, ..., 2,), V]r;] = ¢;, and predecessor i

1s executable; and for all j # ¢ predecessor j 1s not executable, or V[z;| = L, or
I/r [(le] p— (I
Action: V[r| = ¢;

. Given: executable branch branch x bop y, L1 (else L2), Vi|z] = T or

Viy =T
Action: F[L1] = true, F[L2| = true
Given: executable branch branch x bop y, L1 (else L2),V|z| = ¢; and

Viy| = e
Action: F[L1]| = true OR F|L2| = true depending on ¢y bop cs.

SSA Conditional Constant Propagation

Given V', E values, program can be optimized as follows:
o if F|B| = false, delete node B form CFG.

o if V|| = ¢, replace each use of r by ¢, delete assignment to r.

SSA Conditional Constant Propagation

Example

1: rl=1
v

2: 12=1
v

3: 13=0

P

137 =#(r3,1377)

branch r3” < 100

4:1 127 =#(12.12"7) -~

5: branch r2° < 20 6: return 12’

7 277 =rl 9- 2777 =13’
v |

8: 37=13"+1 10: 13777 =13"+2

]_l 1,2:333 Z#(I‘Z’j, 1,2333)
1,3:33:' :#(1,3731 1,33:'3)

N | E[N] r | Vr]
1|t rl | L
2 |f 2 | L
30f 2 | L
4 |f 27| L
5f 27| L
6 | f 27| L
7 f 3 |L
8 |f 3| L
9 | f 37| L
L 10| f 37| L
11 f 37| L

SSA Conditional Constant Propagation

Example

1: rl =1
v

2: 12=1
v

3: 3=0

.

41 127 =#12,127"")

137 =#(13,13"77)

branch r3° < 100

— e

6: return r2’

8: 37=13"+1

11 1‘2;777 :#(1‘277-} 1,2777)
1,3:777 :#(1,3775 1,3777)

SSA Conditional Constant Propagation

Example

1: rl=1
v
2: 12=1
v
3: 13=0
R —

-+ 12°=#1.1)

13’ =#(13.137"7)

branch r3” < 100

—

6: return 1

7 1277 =1

y

8: 37=13"+1

Lo =1, 1)
1,3:37') :#(1,373!. 1,3333)

SSA Conditional Constant Propagation

Example

3 3=0
Vo -
4
L
N\
13° =#(13.13")
branch r3” < 100
6: return 1 :’.
|
|
|
8: 137=13"+1
11:
1‘3”” — #(1‘377’ 1‘3”’) /(/f‘
g

SSA Conditional Constant Propagation

Example

branch r3 < 100

6: return 1

8: 13=13+1

