Def-Use Chains, Use-Def Chains

- Many optimizations need to find all use-sites for each definition, and all definition-sites for each use.
 - Constant propagation must refer to the definition-site of the unique reaching definition.
 - Copy propagation, reverse copy propagation, common sub-expression elimination...
- Information connecting all use-sites to corresponding definition-sites can be stored as def-use chains and/or use-def chains.
- **def-use chains**: for each definition \(d \) of \(r \), list of pointers to all uses of \(r \) that \(d \) reaches.
- **use-def chains**: for each use \(u \) of \(r \), list of pointers to all definitions of \(r \) that reach \(u \).
Use-Def Chains, Def-Use Chains

1: \(r1 = 5 \)

2: \(r3 = 1 \)

3: branch \(r3 > r1, 6:\)

4: \(r3 = r3 + 1 \)

5: goto 3:

6: \(r4 = 10 \)

7: \(r1 = r1 + r4 \)

8: \(M[r3] = r1 \)
Static Single Assignment (SSA):

- improvement on def-use chains
- each register has only one definition in program
- for each use \(u \) of \(r \), only one definition of \(r \) reaches \(u \)

\[
\begin{align*}
\text{r1} &= 5 \\
\text{r1} &= \text{r1} + 1 \\
\text{r2} &= \text{r1} + 1 \\
\text{r3} &= \text{r1} - 1
\end{align*}
\]
Static Single Assignment Advantages:

- Dataflow analysis and code optimization made simpler.
 - Variables have only one definition - no ambiguity.
 - Dominator information is encoded in the assignments.

- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.

- Eliminates unnecessary relationships:

 for i = 1 to N do A[i] = 0
 for i = 1 to M do B[i] = 1

 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second i to new register which may lead to better register allocation/optimization.

(Dynamic Single Assignment is also proposed in the literature.)
Conversion to SSA Code

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

\[
\begin{align*}
 r1 &= r3 + r4 \\
 r2 &= r1 - 1 \\
 r1 &= r4 + r2 \\
 r2 &= r5 \times 4 \\
 r1 &= r1 + r2
\end{align*}
\]

Control flow introduces problems.
Conversion to SSA Form

\[r1 = 5 \]

\[r2 = r1 + 1 \]

\[r3 = r2 + 1 \]

\[r3 = r2 - 1 \]

\[r4 = r3 \times 4 \]

Use \(\phi \) functions.
• ϕ-functions enable the use of $r3$ to be reached by exactly one definition of $r3$.
• $r3'' = \phi(r3, r3')$:
 - $r3'' = r3$ if control enters from left
 - $r3'' = r3'$ if control enters from right
• Can implement ϕ-functions as set of move operations on each incoming edge.
• In practice, ϕ-functions are just used as notation.
Can insert ϕ-functions for each register at each node with more than two predecessors.

\[r1 = 5 \]
\[r2 = r1 + 1 \]
\[r3 = r2 + 1 \]
\[r3 = r2 - 1 \]
\[r4 = r3 \times r1 \]

We can do better...
Conversion to SSA Form

Path-Convergence Criterion: Insert a \(\phi \)-function for a register \(r \) at node \(z \) of the flow graph if ALL of the following are true:

1. There is a block \(x \) containing a definition of \(r \).
2. There is a block \(y \neq x \) containing a definition of \(r \).
3. There is a non-empty path \(P_{xz} \) of edges from \(x \) to \(z \).
4. There is a non-empty path \(P_{yz} \) of edges from \(y \) to \(z \).
5. Paths \(P_{xz} \) and \(P_{yz} \) do not have any node in common other than \(z \).
6. The node \(z \) does not appear within both \(P_{xz} \) and \(P_{yz} \) prior to the end, though it may appear in one or the other.

Assume CFG entry node contains implicit definition of each register:

- \(r = \) actual parameter value
- \(r = \) undefined

\(\phi \)-functions are counted as definitions.
Conversion to SSA Form

Solve path-convergence iteratively:

WHILE (there are nodes x, y, z satisfying conditions 1-6) &&
 (z does not contain a phi-function for r) DO:
 insert $r = \phi(r, r, ..., r)$ (one per predecessor) at node z.

- Costly to compute.
- Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...
Definitions:

- x strictly dominates w if x dominates w and $x \neq w$.
- dominance frontier of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

![Diagram of Dominance Frontier](image)
Dominance Frontier

- *Dominance Frontier Criterion*: Whenever node x contains definition of some register r, then need to insert ϕ-function for r in all nodes z in dominance frontier of x.

- *Iterated Dominance Frontier*: Need to repeatedly apply since ϕ-function counts as a definition.
Dominance Frontier Computation

- Use dominator tree
- $DF[n]$: dominance frontier of n
- $DF_{local}[n]$: successors of n in CFG that are not strictly dominated by n
- $DF_{up}[c]$: nodes in dominance frontier of c that are not strictly dominated by c’s immediate dominator

$$DF[n] = DF_{local}[n] \cup \left(\bigcup_{c \in \text{children}[n]} DF_{up}[c] \right)$$

- where $\text{children}[n]$ are the nodes whose idom is n.
- Work bottom up in dominator tree.
SSA Example

<table>
<thead>
<tr>
<th>Node</th>
<th>$DOM[n]$</th>
<th>$IDOM[n]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: \[r1 = 1 \]
2: \[r2 = 1 \]
3: \[r3 = 0 \]
4: branch $r3 < 100$
5: branch $r2 < 20$
6: return $r2$
7: \[r2 = r1 \]
8: \[r3 = r3 + 1 \]
9: \[r2 = r3 \]
10: \[r3 = r3 + 2 \]
11: \[\]
Dominator Analysis

- If d dominates each of the p_i, then d dominates n.
- If d dominates n, then d dominates each of the p_i.
- $Dom[n] =$ set of nodes that dominate node n.
- $N =$ set of all nodes.
- Computation:

 1. $Dom[s_0] = \{s_0\}$.
 2. for $n \in N - \{s_0\}$ do $Dom[n] = N$
 3. while (changes to any $Dom[n]$ occur) do
 4. for $n \in N - \{s_0\}$ do
 5. $Dom[n] = \{n\} \cup (\cap_{p \in pred[n]} Dom[p])$.
Insert phi-functions:

1. \(r_1 = 1 \)
2. \(r_2 = 1 \)
3. \(r_3 = 0 \)
4. \(\text{branch } r_3 < 100 \)
5. \(\text{branch } r_2 < 20 \)
6. \(\text{return } r_2 \)
7. \(r_2 = r_1 \)
8. \(r_3 = r_3 + 1 \)
9. \(r_2 = r_3 \)
10. \(r_3 = r_3 + 2 \)
11. \(\)
 Rename Variables:

1. traverse dominator tree, renaming different definitions of \(r \) to \(r_1, r_2, r_3 \ldots \)
2. rename each regular use of \(r \) to most recent definition of \(r \)
3. rename \(\phi \)-function arguments with each incoming edge’s unique definition
SSA Example

Rename Variables:

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: branch \(r3 < 100 \)

5: branch \(r2 < 20 \)

6: return \(r2 \)

7: \(r2 = r1 \)

8: \(r3 = r3 + 1 \)

9: \(r2 = r3 \)

10: \(r3 = r3 + 2 \)

11: \[\]
Static Single Assignment

Static Single Assignment Advantages:

- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.

- Eliminates unnecessary relationships:

 \[
 \begin{align*}
 \text{for } i = 1 \text{ to } N & \text{ do } A[i] = 0 \\
 \text{for } i = 1 \text{ to } M & \text{ do } B[i] = 1
 \end{align*}
 \]

 – No reason why both loops should be forced to use same register to hold index register.
 – SSA renames second i to new register which may lead to better register allocation.

- SSA form make certain optimizations quick and easy \(\rightarrow\) dominance property.
 – Variables have only one definition - no ambiguity.
 – Dominator information is encoded in the assignments.
SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

- If x is i^{th} argument of ϕ-function in node n, then definition of x dominates i^{th} predecessor of n.
- If x is used in non-ϕ statement in node n, then definition of x dominates n.
Given $d: \mathfrak{t} = x \ op \ y$

- \mathfrak{t} is live at end of node d if there exists path from end of d to use of \mathfrak{t} that does not go through definition of \mathfrak{t}.

- if program not in SSA form, need to perform liveness analysis to determine if \mathfrak{t} live at end of d.

- if program is in SSA form:
 - cannot be another definition of \mathfrak{t}
 - if there exists use of \mathfrak{t}, then path from end of d to use exists, since definitions dominate uses.
 * every use has a unique definition
 * \mathfrak{t} is live at end of node d if \mathfrak{t} is used at least once
SSA Dead Code Elimination

Algorithm:
WHILE (for each temporary \(t \) with no uses \&\&
 statement defining \(t \) has no other side-effects) DO
 delete statement definition \(t \)

1: \(r1 = 5 \)

2: \(r2 = 10 \)

3: branch \(r3 > r2 \)

4: \(r2' = r2 + 15 \)

5: \(r4 = r3 + X \)

6: \(r2'' = \phi (r2', r2) \)

7: \(M[r4] = r2'' \)
SSA Simple Constant Propagation

Given \(d: t = c \), \(c \) is constant
Given \(u: x = t \ op \ b \)

- if program not in SSA form:
 - need to perform reaching definition analysis
 - use of \(t \) in \(u \) may be replaced by \(c \) if \(d \) reaches \(u \) and no other definition of \(t \) reaches \(u \)

- if program is in SSA form:
 - \(d \) reaches \(u \), since definitions dominate uses, and no other definition of \(t \) exists on path from \(d \) to \(u \)
 - \(d \) is only definition of \(t \) that reaches \(u \), since it is the only definition of \(t \).
 * any use of \(t \) can be replaced by \(c \)
 * any \(\phi \)-function of form \(v = \phi(c_1, c_2, ..., c_n) \), where \(c_i = c \), can be replaced by \(v = c \)
SSA Simple Constant Propagation
SSA Conditional Constant Propagation

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: \(r2' = \#(r2, r2'') \)
 \(r3' = \#(r3, r3''') \)
 branch \(r3' < 100 \)

5: branch \(r2' < 20 \)

6: return \(r2' \)

7: \(r2'' = r1 \)

8: \(r3''' = r3' + 1 \)

9: \(r2''' = r3' \)

10: \(r3''' = r3' + 2 \)

11: \(r2'''' = \#(r2'', r2''') \)
 \(r3'''' = \#(r3'', r3''') \)

- \(r2 \) always has value of 1
- nodes 9, 10 never executed
- “simple” constant propagation algorithms assumes (through reaching definitions analysis) nodes 9, 10 may be executed.
- cannot optimize use of \(r2 \) in node 5 since definitions 7 and 9 both reach 5.
SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track runtime value of each register r using lattice of values:

- $V[r] = \bot$ (bottom): compiler has seen no evidence that any assignment to r is ever executed.
- $V[r] = 4$: compiler has seen evidence that an assignment $r = 4$ is executed, but has seen no evidence that r is ever assigned to another value.
- $V[r] = \top$ (top): compiler has seen evidence that r will have, at various times, two different values, or some value that is not predictable at compile-time.

Also:

- all registers start at bottom of lattice
- new information can only move registers up in lattice
SSA Conditional Constant Propagation

Track executability of each node in N:

- $E[N] = \text{false}$: compiler has seen no evidence that node N can ever be executed.
- $E[N] = \text{true}$: compiler has seen evidence that node N can be executed.

Initially:

- $V[r] = \bot$, for all registers r
- $E[s_0] = \text{true}$, s_0 is CFG start node
- $E[N] = \text{false}$, for all CFG nodes $N \neq s_0$
SSA Conditional Constant Propagation

Algorithm: apply following conditions until no more changes occur to E or V values:

1. Given: register r with no definition (formal parameter, uninitialized).
 Action: $V[r] = \top$

2. Given: executable node B with only one successor C
 Action: $E[C] = \text{true}$

3. Given: executable assignment $r = x \oplus y$, $V[x] = c_1$ and $V[y] = c_2$
 Action: $V[r] = c_1 \oplus c_2$

4. Given: executable assignment $r = x \oplus y$, $V[x] = \top$ or $V[y] = \top$
 Action: $V[r] = \top$

5. Given: executable assignment $r = \phi(x_1, x_2, \ldots, x_n)$, $V[x_i] = c_1$, $V[x_j] = c_2$, and predecessors i and j are executable
 Action: $V[r] = \top$
6. Given: executable assignment \(r = M[\ldots] \) or \(r = f(\ldots) \)
 Action: \(V[r] = T \)

7. Given: executable assignment \(r = \phi(x_1, x_2, \ldots, x_n), V[x_i] = T \), and predecessor \(i \)
is executable
 Action: \(V[r] = T \)

8. Given: executable assignment \(r = \phi(x_1, x_2, \ldots, x_n), V[x_i] = c_i \), and predecessor \(i \)
is executable; and for all \(j \neq i \) predecessor \(j \) is not executable, or \(V[x_j] = \bot \), or
 \(V[x_j] = c_i \)
 Action: \(V[r] = c_i \)

9. Given: executable branch \(\text{branch } x \text{ bop } y, L1 \text{ (else L2)}, V[x] = T \) or
 \(V[y] = T \)
 Action: \(E[L1] = \text{true}, E[L2] = \text{true} \)

10. Given: executable branch \(\text{branch } x \text{ bop } y, L1 \text{ (else L2)}, V[x] = c_1 \) and
 \(V[y] = c_2 \)
 Action: \(E[L1] = \text{true OR } E[L2] = \text{true} \) depending on \(c_1 \text{ bop } c_2 \).
Given V, E values, program can be optimized as follows:

• if $E[B] = \text{false}$, delete node B from CFG.

• if $V[r] = c$, replace each use of r by c, delete assignment to r.
SSA Conditional Constant Propagation

Example

1: \(r_1 = 1 \)
2: \(r_2 = 1 \)
3: \(r_3 = 0 \)
4: \(r'' = \#(r_2, r''') \)
 \(r''' = \#(r_3, r''') \)
 branch \(r''' < 100 \)
5: branch \(r'' < 20 \)
6: return \(r'' \)
7: \(r_2'' = r_1 \)
8: \(r''' = r_3 + 1 \)
9: \(r'''' = r_3' \)
10: \(r''' = r_3' + 2 \)
11: \(r''''' = \#(r_2'', r''') \)
 \(r''''' = \#(r_3'', r''') \)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E[N])</th>
<th>(r)</th>
<th>(V[r])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
<td>(r_1)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>(r_2)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>(r_2')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>(r_2'')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>(r_2''')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>(r_2''''')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>(r_3)</td>
<td>(\perp)</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>(r_3')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>(r_3'')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>(r_3''')</td>
<td>(\perp)</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>(r_3''''')</td>
<td>(\perp)</td>
</tr>
</tbody>
</table>
SSA Conditional Constant Propagation

Example

1: \[r1 = 1 \]

2: \[r2 = 1 \]

3: \[r3 = 0 \]

4: \[\begin{align*}
 r2' &= \#(r2, r2'') \\
 r3' &= \#(r3, r3'') \\
 \text{branch } r3' &< 100
\end{align*} \]

6: \[\text{return } r2' \]

7: \[r2'' = r1 \]

8: \[r3''' = r3' + 1 \]

11: \[\begin{align*}
 r2''' &= \#(r2'', r2''') \\
 r3''' &= \#(r3'', r3''')
\end{align*} \]
SSA Conditional Constant Propagation

Example

1: \(r_1 = 1 \)

2: \(r_2 = 1 \)

3: \(r_3 = 0 \)

4: \(r_2' = (1, 1) \)
\(r_3' = (r_3, r_3'') \)
\(\text{branch } r_3' < 100 \)

6: return 1

7: \(r_2'' = 1 \)

8: \(r_3''' = r_3' + 1 \)

11: \(r_2''' = (1, 1) \)
\(r_3'''' = (r_3'', r_3''') \)
SSA Conditional Constant Propagation

Example

3: \(r3 = 0 \)

4:
\[r3' = \#(r3, r3''\prime) \]
branch \(r3' < 100 \)

6: return 1

8: \(r3'' = r3' + 1 \)

11: \(r3'''' = \#(r3'', r3''\prime) \)
SSA Conditional Constant Propagation

Example

3: \(r3 = 0 \)

4: \(\text{branch } r3 < 100 \)

6: \(\text{return } 1 \)

8: \(r3 = r3 + 1 \)