Def-Use Chains, Use-Def Chains

- Many optimizations need to find all use-sites for each definition, and all definition-sites for each use.
 - Constant propagation must refer to the definition-site of the unique reaching definition.
 - Copy propagation, reverse copy propagation, common sub-expression elimination...
- Information connecting all use-sites to corresponding definition-sites can be stored as def-use chains and/or use-def chains.
- *def-use chains:* for each definition d of r, list of pointers to all uses of r that d reaches.
- *use-def chains:* for each use u of r, list of pointers to all definitions of r that reach u.

Static Single Assignment

Static Single Assignment (SSA):
- improvement on def-use chains
- each register has only one definition in program
- for each use u of r, only one definition of r reaches u

```
1: r1 = 5
2: r3 = 1
3: branch r3 > r1, 6:
4: r3 = r3 + 1
5: goto 3:
6: r4 = 10
7: r1 = r1 + r4
8: M[r3] = r1
9: r2 = r1 + 1
10: r3 = r1 - 1
```

```
1: r1 = 5
2: r1 = r1 + 1
3: branch r3 > r1, 6:
4: r3 = r3 + 1
5: goto 3:
6: r4 = 10
7: r1 = r1 + r4
8: M[r3] = r1
9: r2 = r1 + 1
10: r3 = r1 - 1
```
Why SSA?

Static Single Assignment Advantages:

- Dataflow analysis and code optimization made simpler.
 - Variables have only one definition - no ambiguity.
 - Dominator information is encoded in the assignments.
- Less space required to represent def-use chains. For each variable, space is proportional to uses * defs.
- Eliminates unnecessary relationships:

  ```
  for i = 1 to N do A[i] = 0
  for i = 1 to M do B[i] = 1
  ```
 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second i to new register which may lead to better register allocation/optimization.

(Dynamic Single Assignment is also proposed in the literature.)

Conversion to SSA Code

Easy to convert basic blocks into SSA form:

- Each definition modified to define brand-new register, instead of redefining old one.
- Each use of register modified to use most recently defined version.

\[
\begin{align*}
 r1 & = r3 + r4 \\
 r2 & = r1 - 1 \\
 r1 & = r4 + r2 \\
 r2 & = r5 * 4 \\
 r1 & = r1 + r2
\end{align*}
\]

Control flow introduces problems.

Conversion to SSA Form

\[
\begin{align*}
 r1 & = 5 \\
 r2 & = r1 + 1 \\
 r3 & = r2 + 1 \\
 r3 & = r2 - 1 \\
 r4 & = r3 * 4
\end{align*}
\]

Use \(\phi \) functions.

- \(\phi \)-functions enable the use of \(r3 \) to be reached by exactly one definition of \(r3 \).
- \(r3'' = \phi(r3, r3') \):
 - \(r3'' = r3 \) if control enters from left
 - \(r3'' = r3' \) if control enters from right
- Can implement \(\phi \)-functions as set of move operations on each incoming edge.
- In practice, \(\phi \)-functions are just used as notation.
Conversion to SSA Form

Can insert ϕ-functions for each register at each node with more than two predecessors.

$$\begin{align*}
 r1 &= 5 \\
 \downarrow \\
 r2 &= r1 + 1 \\
 r3 &= r2 + 1 \\
 r3 &= r2 - 1 \\
 r4 &= r3 \times r1
\end{align*}$$

We can do better...

Conversion to SSA Form

Path-Convergence Criterion: Insert a ϕ-function for a register r at node z of the flow graph if ALL of the following are true:

1. There is a block x containing a definition of r.
2. There is a block $y \neq x$ containing a definition of r.
3. There is a non-empty path P_{xz} of edges from x to z.
4. There is a non-empty path P_{yz} of edges from y to z.
5. Paths P_{xz} and P_{yz} do not have any node in common other than z.
6. The node z does not appear within both P_{xz} and P_{yz} prior to the end, though it may appear in one or the other.

Assume CFG entry node contains implicit definition of each register:

- r = actual parameter value
- r = undefined

ϕ-functions are counted as definitions.

Conversion to SSA Form

Solve path-convergence iteratively:

```markdown
WHILE (there are nodes $x, y, z$ satisfying conditions 1-6) &&
    (z does not contain a phi-function for r) DO:
    insert $r = \phi(r, r, ..., r)$ (one per predecessor) at node $z$.
```

- Costly to compute.
- Since definitions dominate uses, use domination to simplify computation.

Use Dominance Frontier...

Dominance Frontier

Definitions:
- x strictly dominates w if x dominates w and $x \neq w$.
- dominance frontier of node x is set of all nodes w such that x dominates a predecessor of w, but does not strictly dominate w.

```
```

```
```
Dominance Frontier

- **Dominance Frontier Criterion**: Whenever node \(x \) contains definition of some register \(r \), then need to insert \(\phi \)-function for \(r \) in all nodes \(z \) in dominance frontier of \(x \).
- **Iterated Dominance Frontier**: Need to repeatedly apply since \(\phi \)-function counts as a definition.

Dominance Frontier Computation

- Use dominator tree
- \(DF[n] \): dominance frontier of \(n \)
- \(DF_{local}[n] \): successors of \(n \) in CFG that are not strictly dominated by \(n \)
- \(DF_{up}(c) \): nodes in dominance frontier of \(c \) that are not strictly dominated by \(c \)'s immediate dominator

\[
DF[n] = DF_{local}[n] \cup (\cup_{c \in \text{children}[n]} DF_{up}(c))
\]

- where \(\text{children}[n] \) are the nodes whose idom is \(n \).
- Work bottom up in dominator tree.

SSA Example

Dominator Analysis

- If \(d \) dominates each of the \(p_i \), then \(d \) dominates \(n \).
- If \(d \) dominates \(n \), then \(d \) dominates each of the \(p_i \).
- \(Dom[n] \) = set of nodes that dominate node \(n \).
- \(N \) = set of all nodes.

Computation:

1. \(Dom[s_0] = \{ s_0 \} \).
2. for \(n \in N - \{ s_0 \} \) do \(Dom[n] = N \)
3. while (changes to any \(Dom[n] \) occur) do
4. for \(n \in N - \{ s_0 \} \) do
5. \(Dom[n] = \{ n \} \cup (\cap_{p \in \text{pred}[n]} Dom[p]) \).
Insert *phi*-functions:

1: \(r_1 = 1 \)
2: \(r_2 = 1 \)
3: \(r_3 = 0 \)
4: \(\text{branch } r_3 < 100 \)
5: \(\text{branch } r_2 < 20 \)
6: \(\text{return } r_2 \)
7: \(r_2 = r_1 \)
8: \(r_3 = r_3 + 1 \)
9: \(r_2 = r_3 \)
10: \(r_3 = r_3 + 2 \)

Rename Variables:

1. traverse dominator tree, renaming different definitions of \(r \) to \(r_1, r_2, r_3 \)...
2. rename each regular use of \(r \) to most recent definition of \(r \)
3. rename \(\phi \)-function arguments with each incoming edge’s unique definition
Static Single Assignment

Advantages:
- Less space required to represent def-use chains. For each variable, space is proportional to uses + defs.
- Eliminates unnecessary relationships:

  ```
  for i = 1 to N do A[i] = 0
  for i = 1 to M do B[i] = 1
  ```
 - No reason why both loops should be forced to use same register to hold index register.
 - SSA renames second i to new register which may lead to better register allocation.
- SSA form make certain optimizations quick and easy — dominance property.
 - Variables have only one definition - no ambiguity.
 - Dominator information is encoded in the assignments.

SSA Dominance Property

Dominance property of SSA form: definitions dominate uses

- If \(x \) is \(i \)th argument of \(\psi \)-function in node \(n \), then definition of \(x \) dominates \(i \)th predecessor of \(n \).
- If \(x \) is used in non-\(\psi \) statement in node \(n \), then definition of \(x \) dominates \(n \).

SSA Dead Code Elimination

Given \(d: t = x \ op \ y \)

- \(t \) is live at end of node \(d \) if there exists path from end of \(d \) to use of \(t \) that does not go through definition of \(t \).
- if program not in SSA form, need to perform liveness analysis to determine if \(t \) live at end of \(d \).
- if program is in SSA form:
 - cannot be another definition of \(t \)
 - if there exists use of \(t \), then path from end of \(d \) to use exists, since definitions dominate uses.
 - every use has a unique definition
 - \(t \) is live at end of node \(d \) if \(t \) is used at least once

SSA Dead Code Elimination

Algorithm:

```
WHILE (for each temporary t with no uses && statement defining t has no other side-effects) DO
  statement definition t
```

```
1:   r1 = 5

2:   r2 = 10

3:   branch r3 > r2

4:   r2' = r2 + 15

5:   r4 = r3 + X

6:   r2'' = (r2', r2)

7:   M[r4] = r2''
```
Given \(d: t = c \), \(c \) is constant

\[\text{Given } u: x = t \text{ op } b \]

- if program not in SSA form:
 - need to perform reaching definition analysis
 - use of \(t \) in \(u \) may be replaced by \(c \) if \(d \) reaches \(u \) and no other definition of \(t \) reaches \(u \)
- if program is in SSA form:
 - \(d \) reaches \(u \), since definitions dominate uses, and no other definition of \(t \) exists on path from \(d \) to \(u \)
 - \(d \) is only definition of \(t \) that reaches \(u \), since it is the only definition of \(t \).
 - any use of \(t \) can be replaced by \(c \)
 - any \(\phi \)-function of form \(v = \phi(c_1, c_2, ..., c_n) \), where \(c_i = c \), can be replaced by \(v = c \)

SSA Conditional Constant Propagation

1: \(r1 = 1 \)

2: \(r2 = 1 \)

3: \(r3 = 0 \)

4: \(r2'' = \#(t2, r2''') \)

\(r3'' = \#(t3, r3''') \)

branch \(r3'' < 100 \)

5: branch \(r2' < 20 \)

6: return \(r2' \)

7: \(r2''' = r1 \)

8: \(r3''' = r3' + 1 \)

9: \(r2'''' = r3'' \)

10: \(r3'''' = r3'' + 2 \)

11: \(r2''''' = \#(r2'''', r2''''') \)

\(r3''''' = \#(r3''', r3''''') \)

- \(r2 \) always has value of 1
- nodes 9, 10 never executed
- “simple” constant propagation algorithms assumes (through reaching definitions analysis) nodes 9, 10 may be executed.
- cannot optimize use of \(r2 \) in node 5 since definitions 7 and 9 both reach 5.

SSA Conditional Constant Propagation

Much smarter than “simple” constant propagation:

- Does not assume a node can execute until evidence exists that it can be.
- Does not assume register is non-constant unless evidence exists that it is.

Track run-time value of each register \(r \) using lattice of values:

- \(V[r] = \bot \) (bottom): compiler has seen no evidence that any assignment to \(r \) is ever executed.
- \(V[r] = 4 \): compiler has seen evidence that an assignment \(r = 4 \) is executed, but has seen no evidence that \(r \) is ever assigned to another value.
- \(V[r] = \top \) (top): compiler has seen evidence that \(r \) will have, at various times, two different values, or some value that is not predictable at compile-time.

Also:

- all registers start at bottom of lattice
- new information can only move registers up in lattice
SSA Conditional Constant Propagation

Track executability of each node in N:

- $E[N] = \text{false}$: compiler has seen no evidence that node N can ever be executed.
- $E[N] = \text{true}$: compiler has seen evidence that node N can be executed.

Initially:

- $V[r] = \perp$, for all registers r
- $E[s_0] = \text{true}$, s_0 is CFG start node
- $E[N] = \text{false}$, for all CFG nodes $N \neq s_0$

Algorithm: apply following conditions until no more changes occur to E or V values:

1. Given: register x with no definition (formal parameter, uninitialized).
 Action: $V[x] = \top$

2. Given: executable node B with only one successor C
 Action: $E[C] = \text{true}$

3. Given: executable assignment $x = \mathit{xop} y$, $V[x] = c_1$ and $V[y] = c_2$
 Action: $V[x] = c_1 \mathit{xop} c_2$

4. Given: executable assignment $x = \mathit{xop} y$, $V[x] = \top$ or $V[y] = \top$
 Action: $V[x] = \top$

5. Given: executable assignment $x = \phi(x_1, x_2, ..., x_n)$, $V[x_i] = c_1$, $V[x_j] = c_2$, and predecessors i and j are executable
 Action: $V[x] = \top$

6. Given: executable assignment $x = \mathit{M}[..]$ or $x = \mathit{f}(..)$
 Action: $V[x] = \top$

7. Given: executable assignment $x = \phi(x_1, x_2, ..., x_n)$, $V[x_i] = \top$, and predecessor i is executable
 Action: $V[x] = \top$

8. Given: executable assignment $x = \phi(x_1, x_2, ..., x_n)$, $V[x_i] = c_i$, and predecessor i is executable; and for all $j \neq i$ predecessor j is not executable, or $V[x_j] = \perp$, or $V[x_j] = c_i$
 Action: $V[x] = c_i$

9. Given: executable branch $x \mathit{bop} y$, L_1 (else L_2), $V[x] = \top$ or $V[y] = \top$
 Action: $E[L_1] = \text{true}$, $E[L_2] = \text{true}$

10. Given: executable branch $x \mathit{bop} y$, L_1 (else L_2), $V[x] = c_1$ and $V[y] = c_2$
 Action: $E[L_1] = \text{true OR } E[L_2] = \text{true depending on } c_1 \mathit{bop} c_2$

Given V, E values, program can be optimized as follows:

- if $E[B] = \text{false}$, delete node B from CFG.
- if $V[r] = c$, replace each use of x by c, delete assignment to r.
SSA Conditional Constant Propagation

Example

1: \(r_1 = 1 \)
2: \(r_2 = 1 \)
3: \(r_3 = 0 \)
4: \(r_2' = \#(2, 2') \)
 \(r_3' = \#(r_3, r_3') \)
 \(\text{branch } r_3' < 100 \)
5: \(\text{branch } r_2' < 20 \)
6: \(\text{return } r_2' \)
7: \(r_2'' = r_1 \)
8: \(r_3'' = r_3' + 1 \)
9: \(\text{branch } r_3' < 100 \)
10: \(r_2''' = \#(r_2'', r_2''') \)
 \(r_3''' = \#(r_3'', r_3''') \)
11: \(r_2'''' = \#(r_2''', r_2''''') \)
 \(r_3'''' = \#(r_3''', r_3''''') \)

SSA Conditional Constant Propagation

Example

1: \(r_1 = 1 \)
2: \(r_2 = 1 \)
3: \(r_3 = 0 \)
4: \(r_2' = \#(2, 2') \)
 \(r_3' = \#(r_3, r_3') \)
 \(\text{branch } r_3' < 100 \)
5: \(\text{return } r_2' \)
6: \(r_2'' = r_1 \)
7: \(r_3'' = r_3' + 1 \)
8: \(r_2''' = \#(r_2'', r_2''') \)
 \(r_3''' = \#(r_3'', r_3'''') \)

SSA Conditional Constant Propagation

Example

3: \[r3 = 0 \]

4: branch \[r3 < 100 \]

6: return 1

8: \[r3 = r3 + 1 \]